NumPy - 统计函数

NumPy 有很多有用的统计函数,用于从数组中给定的元素中查找最小,最大,百分标准差和方差等。 函数说明如下:

numpy.amin() 和 numpy.amax()

这些函数从给定数组中的元素沿指定轴返回最小值和最大值。

示例

import numpy as np
a = np.array([[3,7,5],[8,4,3],[2,4,9]])
print '我们的数组是:'
print a
print '\n'
print '调用 amin() 函数:'
print np.amin(a,1)
print '\n'
print '再次调用 amin() 函数:'
print np.amin(a,0)
print '\n'
print '调用 amax() 函数:'
print np.amax(a)
print '\n'
print '再次调用 amax() 函数:'
print np.amax(a, axis = 0)
Python

输出如下:

我们的数组是:
[[3 7 5]
[8 4 3]
[2 4 9]] 调用 amin() 函数:
[3 3 2] 再次调用 amin() 函数:
[2 4 3] 调用 amax() 函数:
9 再次调用 amax() 函数:
[8 7 9]
Python

numpy.ptp()

numpy.ptp()函数返回沿轴的值的范围(最大值 - 最小值)。

import numpy as np
a = np.array([[3,7,5],[8,4,3],[2,4,9]])
print '我们的数组是:'
print a
print '\n'
print '调用 ptp() 函数:'
print np.ptp(a)
print '\n'
print '沿轴 1 调用 ptp() 函数:'
print np.ptp(a, axis = 1)
print '\n'
print '沿轴 0 调用 ptp() 函数:'
print np.ptp(a, axis = 0)
Python

输出如下:

我们的数组是:
[[3 7 5]
[8 4 3]
[2 4 9]] 调用 ptp() 函数:
7 沿轴 1 调用 ptp() 函数:
[4 5 7] 沿轴 0 调用 ptp() 函数:
[6 3 6]

numpy.percentile()

百分位数是统计中使用的度量,表示小于这个值得观察值占某个百分比。 函数numpy.percentile()接受以下参数。

numpy.percentile(a, q, axis)
Python

其中:

序号 参数及描述
1. a 输入数组
2. q 要计算的百分位数,在 0 ~ 100 之间
3. axis 沿着它计算百分位数的轴

示例

import numpy as np
a = np.array([[30,40,70],[80,20,10],[50,90,60]])
print '我们的数组是:'
print a
print '\n'
print '调用 percentile() 函数:'
print np.percentile(a,50)
print '\n'
print '沿轴 1 调用 percentile() 函数:'
print np.percentile(a,50, axis = 1)
print '\n'
print '沿轴 0 调用 percentile() 函数:'
print np.percentile(a,50, axis = 0)
Python

输出如下:

我们的数组是:
[[30 40 70]
[80 20 10]
[50 90 60]] 调用 percentile() 函数:
50.0 沿轴 1 调用 percentile() 函数:
[ 40. 20. 60.] 沿轴 0 调用 percentile() 函数:
[ 50. 40. 60.]

numpy.median()

中值定义为将数据样本的上半部分与下半部分分开的值。 numpy.median()函数的用法如下面的程序所示。

示例

import numpy as np
a = np.array([[30,65,70],[80,95,10],[50,90,60]])
print '我们的数组是:'
print a
print '\n'
print '调用 median() 函数:'
print np.median(a)
print '\n'
print '沿轴 0 调用 median() 函数:'
print np.median(a, axis = 0)
print '\n'
print '沿轴 1 调用 median() 函数:'
print np.median(a, axis = 1)
Python

输出如下:

我们的数组是:
[[30 65 70]
[80 95 10]
[50 90 60]] 调用 median() 函数:
65.0 沿轴 0 调用 median() 函数:
[ 50. 90. 60.] 沿轴 1 调用 median() 函数:
[ 65. 80. 60.]

numpy.mean()

算术平均值是沿轴的元素的总和除以元素的数量。 numpy.mean()函数返回数组中元素的算术平均值。 如果提供了轴,则沿其计算。

示例

import numpy as np
a = np.array([[1,2,3],[3,4,5],[4,5,6]])
print '我们的数组是:'
print a
print '\n'
print '调用 mean() 函数:'
print np.mean(a)
print '\n'
print '沿轴 0 调用 mean() 函数:'
print np.mean(a, axis = 0)
print '\n'
print '沿轴 1 调用 mean() 函数:'
print np.mean(a, axis = 1)
Python

输出如下:

我们的数组是:
[[1 2 3]
[3 4 5]
[4 5 6]] 调用 mean() 函数:
3.66666666667 沿轴 0 调用 mean() 函数:
[ 2.66666667 3.66666667 4.66666667] 沿轴 1 调用 mean() 函数:
[ 2. 4. 5.]

numpy.average()

加权平均值是由每个分量乘以反映其重要性的因子得到的平均值。 numpy.average()函数根据在另一个数组中给出的各自的权重计算数组中元素的加权平均值。 该函数可以接受一个轴参数。 如果没有指定轴,则数组会被展开。

考虑数组[1,2,3,4]和相应的权重[4,3,2,1],通过将相应元素的乘积相加,并将和除以权重的和,来计算加权平均值。

加权平均值 = (1*4+2*3+3*2+4*1)/(4+3+2+1)

示例

import numpy as np
a = np.array([1,2,3,4])
print '我们的数组是:'
print a
print '\n'
print '调用 average() 函数:'
print np.average(a)
print '\n'
# 不指定权重时相当于 mean 函数
wts = np.array([4,3,2,1])
print '再次调用 average() 函数:'
print np.average(a,weights = wts)
print '\n'
# 如果 returned 参数设为 true,则返回权重的和
print '权重的和:'
print np.average([1,2,3, 4],weights = [4,3,2,1], returned = True)
Python

输出如下:

我们的数组是:
[1 2 3 4] 调用 average() 函数:
2.5 再次调用 average() 函数:
2.0 权重的和:
(2.0, 10.0)

在多维数组中,可以指定用于计算的轴。

示例

import numpy as np
a = np.arange(6).reshape(3,2)
print '我们的数组是:'
print a
print '\n'
print '修改后的数组:'
wt = np.array([3,5])
print np.average(a, axis = 1, weights = wt)
print '\n'
print '修改后的数组:'
print np.average(a, axis = 1, weights = wt, returned = True)
Python

输出如下:

我们的数组是:
[[0 1]
[2 3]
[4 5]] 修改后的数组:
[ 0.625 2.625 4.625] 修改后的数组:
(array([ 0.625, 2.625, 4.625]), array([ 8., 8., 8.]))

标准差

标准差是与均值的偏差的平方的平均值的平方根。 标准差公式如下:

std = sqrt(mean((x - x.mean())**2))
Python

如果数组是[1,2,3,4],则其平均值为2.5。 因此,差的平方是[2.25,0.25,0.25,2.25],并且其平均值的平方根除以4,即sqrt(5/4)1.1180339887498949

示例

import numpy as np
print np.std([1,2,3,4])
Python

输出如下:

1.1180339887498949
Python

方差

方差是偏差的平方的平均值,即mean((x - x.mean())** 2)。 换句话说,标准差是方差的平方根。

示例

import numpy as np
print np.var([1,2,3,4])
Python

输出如下:

1.25
Python
 

NumPy统计函数的更多相关文章

  1. NumPy 统计函数

    NumPy 统计函数 NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等. 函数说明如下: numpy.amin() 和 numpy.amax() numpy.a ...

  2. 14、numpy——统计函数

    NumPy 统计函数 NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等. 函数说明如下:(沿哪条轴执行,就是是最后结果的形式) 1.numpy.amin() 和 ...

  3. NumPy——统计函数

    引入模块import numpy as np 1.numpy.sum(a, axis=None)/a.sum(axis=None) 根据给定轴axis计算数组a相关元素之和,axis整数或元组,不指定 ...

  4. Lesson17——NumPy 统计函数

    NumPy 教程目录 1 NumPy 统计函数 NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等. 函数说明如下 1.1 统计 method descripti ...

  5. 吴裕雄--天生自然Numpy库学习笔记:NumPy 统计函数

    NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等. numpy.amin() 用于计算数组中的元素沿指定轴的最小值. numpy.amax() 用于计算数组中的 ...

  6. 数据分析 大数据之路 四 numpy 2

    NumPy 数学函数 NumPy 提供了标准的三角函数:sin().cos().tan(import numpy as np a = np.array([0,30,45,60,90])print (' ...

  7. numpy学习笔记(三)

    (1)numpy的位操作 序号         操作及描述 1.      bitwise_and 对数组元素执行位与操作 2.      bitwise_or 对数组元素执行位或操作 3.      ...

  8. NumPy教程目录

    NumPy Ndarray对象 NumPy数组属性 NumPy数据类型 NumPy数组创建例程 NumPy来自现有数据的数组 NumPy来自数值范围的数组 NumPy切片和索引 NumPy - 高级索 ...

  9. Python之Numpy详细教程

    NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前 ...

随机推荐

  1. git base commond

    打开Git Bash 命令:先写 git status, 它会告诉你怎么做 1. git pull  (把git库中代码拉下来)      2. $ git status (查看状态) 3. $ gi ...

  2. coreldraw X6 cdrX6下载激活工具

    coreldraw X6 cdrX6下载激活工具 百度网盘 CDRX6下载 激活教程什么的请参考 低吟浅唱 博客

  3. Express入门教程:一个简单的博客

    来自:  http://ourjs.com/detail/56b2a6f088feaf2d031d2468 Express 简介 Express 是一个简洁而灵活的 node.js Web应用框架, ...

  4. Oracle http://127.0.0.1:8080/apex无法访问解决方案

    造成无法访问的原因多数情况是由于Oracle中TNS的配置发生了改变. 造成TNS配置有问题的原因可能是:1. 修改了计算机名    2. 修改了IP 默认oracleXE 启动OracleXETNS ...

  5. Hibernate 处理事务

    1. Hibernate 的持久化类 1.1 什么是持久化类 持久化类: 就是一个 Java 类(JavaBean),这个 Java类与表建立了映射关系就可以是持久化类; 持久化类 = JavaBea ...

  6. python线程间数据共享(示例演示)

    ``` import threading data_list = [] def task(arg): data_list.append(arg) print(data_list) def run(): ...

  7. Vue(5)- axios、vuex

    一.内容回顾 1.webpack(前端中工作,项目上线之前对整个前端项目优化) - entry:整个项目的程序入口(main.js或index.js): - output:输出的出口: - loade ...

  8. Spring-Hello World实例

    Spring Hello World实例 创建Java项目 添加Jar包 创建源文件 现在在Spring项目下创建实际的源文件.首先,要创建一个名为com.tuorialsponit的包,然后在该co ...

  9. mongo 一次插入多条

    db.getCollection('organization').insert( [ {"organizationTitle" : "台州广播电台1", &qu ...

  10. PyNest——part 4: topologically structured networks

    part 4: topologically structured networks incorporating structure in networks of point neurons 如果我们使 ...