【题意】给定n个点的图,正权无向边,正负权有向边,保证对有向边(u,v),v无法到达u,求起点出发到达所有点的最短距离。

【算法】拓扑排序+dijkstra

【题解】因为有负权边,直接对原图进行spfa,加slf优化后可过,但是这道题就没意思了。

理论上,最短路问题用spfa是不能保证复杂度的,但dijkstra的问题是不能处理负权边。

因为题目保证不能返回,实际上有向边将全图分成了几个部分。如果把仅由无向边连接的连通块看成点,则原图变成DAG。

对连通块内部进行dijkstra,在DAG上用拓扑序递推计算就可以保证O(n log n)出解。

具体实现:全图共用最短距离数组d[]。

对跨越连通块的有向边建新图,先用部分拓扑序删掉不从s出发的点。

开连通块个数的堆。

然后拓扑排序的过程中将到达别的连通块的点加入对应的堆,dijkstra时直接开始不用设置初始状态。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
#include<queue>
using namespace std;
const int maxn=,inf=0x3f3f3f3f;
int first[maxn],FIRST[maxn],d[maxn],col[maxn],in[maxn],A[maxn],B[maxn];
int tot,cnt,n,m,N,M,s,color;
struct edge{int v,w,from;}e[maxn*],E[maxn*];
struct cyc{
int x,d;
bool operator < (const cyc &a)const{
return d>a.d;//
}
};
priority_queue<cyc>q[maxn];
int read(){
char c;int s=,t=;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
void insert(int u,int v,int w){tot++;e[tot].v=v;e[tot].w=w;e[tot].from=first[u];first[u]=tot;}
void INSERT(int u,int v,int w){cnt++;E[cnt].v=v;E[cnt].w=w;E[cnt].from=FIRST[u];FIRST[u]=cnt;in[v]++;}
void dfs(int x,int color){
col[x]=color;
for(int i=first[x];i;i=e[i].from)if(!col[e[i].v]){
dfs(e[i].v,color);
}
}
queue<int>Q;
void dijkstra(int k){
while(!q[k].empty()){
cyc y=q[k].top();q[k].pop();
if(y.d!=d[y.x])continue;
int x=y.x;
for(int i=first[x];i;i=e[i].from)if(d[e[i].v]>d[x]+e[i].w){
d[e[i].v]=d[x]+e[i].w;
q[k].push((cyc){e[i].v,d[e[i].v]});
}
}
}
int main(){
scanf("%d%d%d%d",&n,&m,&M,&s);
for(int i=;i<=m;i++){
int u=read(),v=read(),w=read();
insert(u,v,w);insert(v,u,w);
}
for(int i=;i<=n;i++)if(!col[i])dfs(i,++N);
for(int i=;i<=M;i++){
int u=read(),v=read(),w=read();
INSERT(col[u],col[v],w);
A[i]=u;B[i]=v;
}
for(int i=;i<=N;i++)if(!in[i]&&col[s]!=i)Q.push(i);
while(!Q.empty()){
int x=Q.front();Q.pop();
for(int i=FIRST[x];i;i=E[i].from){
in[E[i].v]--;
if(!in[E[i].v]&&col[s]!=E[i].v)Q.push(E[i].v);
}
}
Q.push(col[s]);
memset(d,0x3f,sizeof(d));d[s]=;q[col[s]].push((cyc){s,});
while(!Q.empty()){
int x=Q.front();Q.pop();
dijkstra(x);
for(int i=FIRST[x];i;i=E[i].from){
if(d[B[i]]>d[A[i]]+E[i].w){
d[B[i]]=d[A[i]]+E[i].w;
q[E[i].v].push((cyc){B[i],d[B[i]]});
}
in[E[i].v]--;
if(!in[E[i].v])Q.push(E[i].v);
}
}
for(int i=;i<=n;i++)if(d[i]<inf)printf("%d\n",d[i]);else printf("NO PATH\n");
return ;
}

dijkstra使用小根堆!每次加入距离最小的点。最致命的是写成大根堆也可以跑出答案,但是大数据就会很慢。

dijkstra使用小根堆!

dijkstra使用小根堆!

dijkstra使用小根堆!

dijkstra使用小根堆!

dijkstra使用小根堆!

dijkstra使用小根堆!

dijkstra使用小根堆!

dijkstra使用小根堆!

dijkstra使用小根堆!

【BZOJ】2200: [Usaco2011 Jan]道路和航线的更多相关文章

  1. [BZOJ 2200][Usaco2011 Jan]道路和航线 spfa+SLF优化

    Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...

  2. bzoj 2200: [Usaco2011 Jan]道路和航线——拓扑+dijkstra

    Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...

  3. BZOJ 2200: [Usaco2011 Jan]道路和航线

    Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...

  4. bzoj 2200: [Usaco2011 Jan]道路和航线【spfa】

    直接跑最短路就行了--还不用判负环 #include<iostream> #include<cstdio> #include<queue> using namesp ...

  5. 2200: [Usaco2011 Jan]道路和航线 (拓扑排序+dijstra)

    Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...

  6. [Usaco2011 Jan]道路和航线

    Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...

  7. bzoj2200: [Usaco2011 Jan]道路和航线

    先忽略航线,求出图中所有连通块,再用航线拓扑排序求出每个连通块的优先级 然后dijkstra时优先处理优先级高的块里的点就行了 ps:这题SPFA会TLE #include <iostream& ...

  8. BZOJ 2200--[Usaco2011 Jan]道路和航线(最短路&拓扑排序)

    2200: [Usaco2011 Jan]道路和航线 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1128  Solved: 414[Submit] ...

  9. BZOJ 2199: [Usaco2011 Jan]奶牛议会

    2199: [Usaco2011 Jan]奶牛议会 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 375  Solved: 241[Submit][S ...

随机推荐

  1. 寒假作业end

    开始写博客的个人体会 自己打的链表过不了,果然,心存侥幸是不行的,被揪出来也不错,很感谢畅畅酱. 学术诚信的重要性 爱因斯坦说过:"大多数人说是才智造就了伟大的科学家,他们错了,是人格.&q ...

  2. 再学习Webform页面生命周期

    参考文章: 在vs2010,新建一个aspx页面,页面头部有一行代码: <%@ Page Language="C#" AutoEventWireup="true&q ...

  3. SQL 单表分页存储过程和单表多字段排序和任意字段分页存储过程

      第一种:单表多字段排序分页存储过程       --支持单表多字段查询,多字段排序 create PROCEDURE [dbo].[UP_GetByPageFiledOrder] ( ), --表 ...

  4. Swagger Authorization:bearer <token>

    1.添加如下代码 /** * * @SWG\SecurityScheme( * securityDefinition="Bearer", * type="apiKey&q ...

  5. UVA 167 R-The Sultan's Successors

    https://vjudge.net/contest/68264#problem/R The Sultan of Nubia has no children, so she has decided t ...

  6. 在ios 上 按钮 disabled 样式显示异常

    将input,button或textarea设置为disabled后,在iphone手机上样式将被覆写-webkit-appearance:none; 文字的颜色还是灰色. 原本在android 上 ...

  7. bzoj3502[PA2012]Tanie Linie(最大k区间和)

    题意:给定一个长为n的数列,要求选出最多k个不相交的区间(可以不选),使得选中的数字之和最大.(1<=k<=n<=1000000)分析:首先我们通过预处理对问题做一些简化.原序列中的 ...

  8. 【bzoj4602】[Sdoi2016]齿轮 BFS

    题目描述 给出一张n个点m条边的有向图,每条边 (u,v,x,y) 描述了 u 的点权乘 x 等于 v 的点权乘 y (点权可以为负).问:是否存在满足条件的图. 输入 有多组数据,第一行给定整数T, ...

  9. 【bzoj1131】[POI2008]Sta 树形dp

    题目描述 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 输入 给出一个数字N,代表有N个点.N<=1000000 下面N-1条边. 输出 输出你所找到的点,如果具有 ...

  10. 【bzoj3545/bzoj3551】[ONTAK2010]Peaks/加强版 Kruskal+树上倍增+Dfs序+主席树

    bzoj3545 题目描述 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询 ...