【51NOD-0】1012 最小公倍数LCM
【算法】欧几里德算法
#include<cstdio>
int gcd(int a,int b)
{return b==?a:gcd(b,a%b);}
int main()
{
int a,b;
scanf("%d%d",&a,&b);
printf("%lld",1ll*a*b/gcd(a,b));
return ;
}
【51NOD-0】1012 最小公倍数LCM的更多相关文章
- 1012 最小公倍数LCM
1012 最小公倍数LCM 基准时间限制:1 秒 空间限制:131072 KB 输入2个正整数A,B,求A与B的最小公倍数. Input 2个数A,B,中间用空格隔开.(1<= A,B < ...
- 51nod 1012 最小公倍数LCM
输入2个正整数A,B,求A与B的最小公倍数. 收起 输入 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) 输出 输出A与B的最小公倍数. 输入样例 30 105 输出 ...
- 最大公约数(GCD)与最小公倍数(LCM)的计算
给出两个数a.b,求最大公约数(GCD)与最小公倍数(LCM) 一.最大公约数(GCD) 最大公约数的递归: * 1.若a可以整除b,则最大公约数是b * 2.如果1不成立,最大公约数便是b ...
- 51NOD 1227 平均最小公倍数 [杜教筛]
1227 平均最小公倍数 题意:求\(\frac{1}{n} \sum_{i=1}^n lcm(n,i)\) 和的弱化版? \[ ans = \frac{1}{2}((\sum_{i=1}^n \su ...
- POJ 3970(最小公倍数LCM)
版权声明:Site:https://skyqinsc.github.io/ https://blog.csdn.net/u013986860/article/details/26182055 知 ...
- 最小公倍数LCM
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入2个正整数A,B,求A与B的最小公倍数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= ...
- ACM数论之旅3---最大公约数gcd和最小公倍数lcm(苦海无边,回头是岸( ̄∀ ̄))
gcd(a, b),就是求a和b的最大公约数 lcm(a, b),就是求a和b的最小公倍数 然后有个公式 a*b = gcd * lcm ( gcd就是gcd(a, b), ( •̀∀•́ ) ...
- 【51Nod 1222】最小公倍数计数
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1222 求\([a,b]\)中的个数转化为求\([1,b]\)中的个数减去 ...
- 【51nod】1222 最小公倍数计数 莫比乌斯反演+组合计数
[题意]给定a和b,求满足a<=lcm(x,y)<=b && x<y的数对(x,y)个数.a,b<=10^11. [算法]莫比乌斯反演+组合计数 [题解]★具体 ...
随机推荐
- ARKit----学习一
一.ARKit的简介 开始进入正题吧 ARKit在iOS 11上推出的一个AR移动平台,支持A9以上的处理器,不支持模拟器.ARKit使用相机捕捉现实世界,使用SceneKit,SpriteKit或者 ...
- thinkPHP框架单一入口文件解析
一.index.php (可参考ThinkPHP学习手册http://document.thinkphp.cn/manual_3_2.html#entrance_file) index.php单入口 ...
- Java问题排查工具单
前言 平时的工作中经常碰到很多疑难问题的处理,在解决问题的同时,有一些工具起到了相当大的作用,在此书写下来,一是作为笔记,可以让自己后续忘记了可快速翻阅,二是分享,希望看到此文的同学们可以拿出自己日常 ...
- BZOJ 1486 最小圈(01分数规划)
好像是很normal的01分数规划题.最小比率生成环. u(c)=sigma(E)/k.转化一下就是k*u(c)=sigma(E). sigma(E-u(c))=0. 所以答案对于这个式子是有单调性的 ...
- Redis的RDB和AOF持久化
RDB 持久化:在指定的时间间隔内生成数据集的时间点快照. AOF 持久化:记录服务器执行的所有写操作命令,并在服务器启动时,通过重新执行这些命令来还原数据集. RDB 它只保存了 Redis 在某个 ...
- CentOS 文件搜索find
1.文件搜索,内置的的命令是find 用法: find [查找路径] 寻找条件 操作 默认路径为当前目录:默认表达式为 -print 2.主要参数: -name 匹配名称 -perm 匹配权限(mod ...
- 【题解】洛谷9月月赛加时赛 —— Never·island
有趣有趣~ヾ(✿゚▽゚)ノ真的很有意思的一道dp题!感觉可以提供很多非常有意思的思路~ 现场打的时候考虑了很久,但并没有做出来,主要还是卡在了两个地方:1.考虑到按照端点来进行dp,但没有办法将两个端 ...
- [BZOJ5292] [BJOI2018]治疗之雨
题目链接 BZOJ:https://lydsy.com/JudgeOnline/problem.php?id=5292 洛谷:https://www.luogu.org/problemnew/show ...
- POJ3630:Phone List——题解
http://poj.org/problem?id=3630 简单的trie树问题,先添加,然后每个跑一边看中途有没有被打上结束标记即可. #include<cstdio> #includ ...
- LOJ2537:[PKUWC2018]Minimax——题解
https://loj.ac/problem/2537 参考了本题在网上能找到的为数不多的题解. 以及我眼睛瞎没看到需要离散化,还有不开longlong见祖宗. ——————————————————— ...