链接:

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4454

题意:

输入整数n(1≤n≤30000000),有多少对整数(a,b)满足:1≤b≤a≤n,且gcd(a,b)=a xor b。
例如n=7时,有4对:(3,2), (5,4), (6,4), (7,6)。

分析:

若a xor b = c,则a xor c = b,所以可以枚举a和c,然后算出b=a xor c,最后验证一下是否有gcd(a,b)=c。
时间复杂度如何?因为c是a的约数,所以和素数筛法类似,时间复杂度为n/1+n/2+…+n/n=O(nlogn)。
再加上gcd的时间复杂度为O(logn),所以总的时间复杂度为O(n(logn)(logn))。
上述程序写出来之后,可以打印一些满足gcd(a,b)=a xor b=c的三元组(a,b,c),然后很容易发现:c=a-b。
有了这个结论,还是沿用上述算法,枚举a和c,计算b=a-c,则gcd(a,b)=gcd(a,a-c)=c,
因此只需验证是否有c = a xor b,时间复杂度降为了O(nlogn)。

c=a-b的证明如下(其中⊕代表异或):
① c=a⊕b
② a-b≤a⊕b
③ a-b≥c
由①②③得:a-b≥c且a-b≤c,所以a-b=c。

证明②:

证明③:
因为c=gcd(a,b)且a>b,所以a/c-b/c≥1,即a-b≥c,证毕。

代码:

 import java.io.*;
import java.util.*; public class Main {
static final int UP = 30000000 + 1;
static int sum[] = new int[UP]; static void constant() {
for(int c = 1; c < UP; c++) {
for(int a = c + c; a < UP; a += c) {
int b = a - c;
if((a ^ b) == c) sum[a]++;
}
}
for(int i = 1; i < UP; i++) sum[i] += sum[i-1];
} public static void main(String args[]) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
constant(); int T = cin.nextInt();
for(int cases = 1; cases <= T; cases++) {
int n = cin.nextInt();
System.out.printf("Case %d: %d\n", cases, sum[n]);
}
cin.close();
}
}

UVa 12716 - GCD XOR(筛法 + 找规律)的更多相关文章

  1. UVA.12716 GCD XOR (暴力枚举 数论GCD)

    UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...

  2. UVA 12716 GCD XOR (异或)

    题意:求出[1,n]中满足gcd(a,b)=a xor b,且1<=a<=b<=n的对数 题解:首先a xor b = c,则a xor c = b,而b是a的约数,则可以使用素数筛 ...

  3. UVa 12716 (GCD == XOR) GCD XOR

    题意: 问整数n以内,有多少对整数a.b满足(1≤b≤a)且gcd(a, b) = xor(a, b) 分析: gcd和xor看起来风马牛不相及的运算,居然有一个比较"神奇"的结论 ...

  4. UVA 12716 GCD XOR

    https://vjudge.net/problem/UVA-12716 求有多少对整数(a,b)满足:1<=b<=a<=n,且gcd(a,b)=a XOR b 结论:若gcd(a, ...

  5. UVA 12716 GCD XOR(数论+枚举+打表)

     题意:给你一个N,让你求有多少组A,B,  满足1<= B <= A <= N, 且 gcd(A,B) = A XOR B. 思路:首先我们能够得出两个结论: A-B > ...

  6. UVA - 12716 GCD XOR(GCD等于XOR)(数论)

    题意:输入整数n(1<=n<=30000000),有多少对整数(a, b)满足:1<=b<=a<=n,且gcd(a,b)=a XOR b. 分析:因为c是a的约数,所以枚 ...

  7. UVA 12716 GCD XOR【异或】

    参考:http://www.cnblogs.com/naturepengchen/articles/3952145.html #include<stdio.h> #include<s ...

  8. UVa 12716 GCD XOR (简单证明)

    题意: 问 gcd(i,j) = i ^ j  的对数(j <=i <= N ) N的范围为30000000,有10000组例子 思路:GCD(a,b) = a^b = c GCD(a/c ...

  9. 数学--数论--HDU 1792 A New Change Problem (GCD+打表找规律)

    Problem Description Now given two kinds of coins A and B,which satisfy that GCD(A,B)=1.Here you can ...

随机推荐

  1. PostgreSQL On Windows Process Connection Performance

    本文主要对PostgreSql在Windows下的连接测试. 测试环境: Win7 x64, PostgreSql 10.1 x64 测试语言: VS2015 C# 因为Pg的数据库连接是开启进程来处 ...

  2. vue 报错./lib/html5-entities.js, this relative module was not found

    今天在做项目一直都挺正常的,我稍微休息一下回来就报这个错,我百度了半天也没找到答案.然后我只能重新安装vue-cli,奇迹发生了错误没有,然后我又休息了一会发现有报错了.气炸了都. 话不多多说直接上图 ...

  3. java温故而知新(6)深入理解IO Stream

    一.什么是IO Stream Stream 是在编程语言中对输入输出的总称 (一种比喻的称谓.Stream 为流水,输入输出实际上就是指数据的流动,数据由一个地方运动的另一个地方,就像流水一样,程序员 ...

  4. eclipse切换workspace后配置问题

    正常情况下如果切换了eclipse的workspace后,需要重新配置eclipse,但是可以将原工作目录中的.metadata/.plugins/org.eclipse.core.runtime拷贝 ...

  5. Tomcat Post请求大小限制

    理论上讲,POST是没有大小限制的.HTTP协议规范也没有进行大小限制,起限制作用的是服务器的处理程序的处理能力. 如:在Tomcat下取消POST大小的限制(Tomcat默认2M): 打开tomca ...

  6. java 用Graphics制作模糊验证码

    这篇随笔主要是java中制作验证码的效果,由于是在国庆前做的,现在也找不到原载了.我对自己整理的发表一份 生成的验证码效果如下: 一.建立一个工具类,用来生成验证码 package com.dkt.u ...

  7. ccf-201809-2 买菜

    问题描述 小H和小W来到了一条街上,两人分开买菜,他们买菜的过程可以描述为,去店里买一些菜然后去旁边的一个广场把菜装上车,两人都要买n种菜,所以也都要装n次车.具体的,对于小H来说有n个不相交的时间段 ...

  8. pv-remjs的快速开始

    pv-remjs 这是一个移动端适配的工具类,采用rem布局的方式 ## 快速开始 在html文件中引入,先查看版本`<script src= "https://unpkg.com/p ...

  9. 2013年未之wpf项目乱述

    不知识为何现已很少在网上发帖,貌似人生的方向已经看的七七八八.要么用心工作,要么自主创业.无论怎么样,对于现在的我来说都是一种淡定的选择.作为一个c#程序员,今年下半年开始使用wpf,更觉得wpf将来 ...

  10. Keras 时序模型

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/Thinking_boy1992/article/details/53207177 本文翻译自 时序模 ...