多边形内最大半径圆。

哇没有枉费了我自闭了这么些天,大概五天前我看到这种题可能毫无思路抓耳挠腮举手投降什么的,现在已经能1A了哇。

还是先玩一会计算几何,刷个几百道

嗯这个半平面交+二分就阔以解决。虽然队友说他施展三分套三分*****

想象一下,如果一个多边形能放进去半径为r的圆,那么在每条边向里平移r之后,他的内核一定不为空。

所以我们可以二分r,然后求半平面交,平移操作其实很好处理。

1A了很开森,去快乐的玩耍惹。

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cmath>
#include <deque>
using namespace std;
typedef double db;
const db eps=1e-;
const db pi=acos(-);
int sign(db k){
if (k>eps) return ; else if (k<-eps) return -; return ;
}
int cmp(db k1,db k2){return sign(k1-k2);}
struct point{
db x,y;
point operator + (const point &k1) const{return (point){k1.x+x,k1.y+y};}
point operator - (const point &k1) const{return (point){x-k1.x,y-k1.y};}
point operator * (db k1) const{return (point){x*k1,y*k1};}
point operator / (db k1) const{return (point){x/k1,y/k1};}
db abs(){return sqrt(x*x+y*y);}
point unit(){db w=abs(); return point{x/w,y/w};}
point turn90(){ return point{-y,x};}
db getP()const { return sign(y)==||(sign(y)==&&sign(x)==-);}
};
db cross(point k1,point k2){ return k1.x*k2.y-k1.y*k2.x;}
db dot(point k1,point k2){ return k1.x*k2.x+k1.y*k2.y;}
db rad(point k1,point k2){ return atan2(cross(k1,k2),dot(k1,k2));}
int compareangle(point k1,point k2){
return k1.getP()<k2.getP()||(k1.getP()==k2.getP()&&sign(cross(k1,k2))>);
}
point getLL(point k1,point k2,point k3,point k4){
db w1=cross(k1-k3,k4-k3),w2=cross(k4-k3,k2-k3);
return (k1*w2+k2*w1)/(w1+w2);
}
struct line{
point p[];
line(point k1,point k2){p[]=k1;p[]=k2;}
point &operator[](int k){ return p[k];}
int include(point k){ return sign(cross(p[]-p[],k-p[])>);}
point dir(){ return p[]-p[];}
line push(db eps){//向左手边平移eps
//const db eps=1e-6;
point delta=(p[]-p[]).turn90().unit()*eps;
return {p[]-delta,p[]-delta};
}
};
point getLL(line k1,line k2){
return getLL(k1[],k1[],k2[],k2[]);
}
int parallel(line k1,line k2){ return sign(cross(k1.dir(),k2.dir()))==;}
int sameDir(line k1,line k2){
return parallel(k1,k2)&&sign(dot(k1.dir(),k2.dir()))==;
}
int operator <(line k1,line k2){
if(sameDir(k1,k2))return k2.include(k1[]);
return compareangle(k1.dir(),k2.dir());
}
int checkpos(line k1,line k2,line k3){ return k3.include(getLL(k1,k2));}
vector<line> getHL(vector<line> &L){
sort(L.begin(),L.end());deque<line> q;
for(int i=;i<L.size();i++){
if(i&&sameDir(L[i],L[i-]))continue;
while (q.size()>&&!checkpos(q[q.size()-],q[q.size()-],L[i]))q.pop_back();
while (q.size()>&&!checkpos(q[],q[],L[i]))q.pop_front();
q.push_back(L[i]);
}
while (q.size()>&&!checkpos(q[q.size()-],q[q.size()-],q[]))q.pop_back();
while (q.size()>&&!checkpos(q[],q[],q[q.size()-]))q.pop_front();
vector<line> ans;for(int i=;i<q.size();i++)ans.push_back(q[i]);
return ans;
}
point p[];
int n;
bool cw(){//时针
db s=;
for(int i=;i<n-;i++){
s+=cross(p[i]-p[],p[i+]-p[]);
}
return s>;
}
vector<line> L,tmp;
bool check(db x){
tmp.clear();
for(int i=;i<L.size();i++){
tmp.push_back(L[i].push(-x));
}
tmp = getHL(tmp);
if(tmp.size()>=)
return true;
return false;
}
int main(){
//freopen("3525.in","r",stdin);
while (scanf("%d",&n)&&n){
for(int i=;i<n;i++){
scanf("%lf%lf",&p[i].x,&p[i].y);
}
if(!cw())reverse(p,p+n);
for(int i=;i<n;i++){
L.push_back(line(p[i],p[(i+)%n]));
}
db l = ,r=100000.0;
while (l+0.0000001<r){
db mid = (l+r)/;
if(check(mid))
l=mid;
else
r=mid;
}
printf("%.7f\n",l);
L.clear();
}
}

poj 3525的更多相关文章

  1. poj 3525 凸多边形多大内切圆

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4758   ...

  2. POJ 3525 Most Distant Point from the Sea

    http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...

  3. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  4. 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

    按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...

  5. POJ 3525 半平面交+二分

    二分所能形成圆的最大距离,然后将每一条边都向内推进这个距离,最后所有边组合在一起判断时候存在内部点 #include <cstdio> #include <cstring> # ...

  6. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

  7. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  8. poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】

    <题目链接> 题目大意:给出一个四面环海的凸多边形岛屿,求出这个岛屿中的点到海的最远距离. 解题分析: 仔细思考就会发现,其实题目其实就是让我们求该凸多边形内内切圆的最大半径是多少.但是, ...

  9. POJ 3525 Most Distant Point from the Sea 二分+半平面交

    题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...

随机推荐

  1. golang 无法将Slice类型[]a 转换为 Slice[]b

    因为我想做一个通用的Slice方法,AnySlice,但是将AnySlice定义为[]interface{ } 转换到别的类型,或者相互转换的时候都是会报错. 这是golang比较恶心人的一个地方了, ...

  2. Mockito-简单使用使用

    参考案例:(本位使用markdown编写) git.oschina实例:https://gitee.com/lhhTestTool/LhhMockito # LhhMockitomock 单元测试 M ...

  3. SSE图像算法优化系列二十九:基础的拉普拉斯金字塔融合用于改善图像增强中易出现的过增强问题(一)

    拉普拉斯金字塔融合是多图融合相关算法里最简单和最容易实现的一种,我们在看网络上大部分的文章都是在拿那个苹果和橙子融合在一起,变成一个果橙的效果作为例子说明.在这方面确实融合的比较好.但是本文我们主要讲 ...

  4. 通过Comparable来实现对自身的比较

    import org.apache.commons.lang.builder.CompareToBuilder; import org.apache.commons.lang.builder.Equa ...

  5. VTK使用矢量数据弯曲几何体

    vtkWarpVector is a filter that modifies point coordinates by moving points along vector times the sc ...

  6. 处理器 趣事 CPU/GPU/TPU/DPU/BPU

    有消息称,阿里巴巴达摩院正在研发一款神经网络芯片——Ali-NPU,主要运用于图像视频分析.机器学习等AI推理计算.按照设计,这款芯片性能将是目前市面上主流CPU.GPU架构AI芯片的10倍,而制造成 ...

  7. [转]rsync命令中文文档

    原文链接 rsync是一个快速.多功能的远程(和本地)文件拷贝工具. 摘要 Local: rsync [OPTION...] SRC... [DEST] Access via remote shell ...

  8. Mongodb系列- java客户端简单使用(CRUD)

    Mongodb提供了很多的客户端: shell,python, java, node.js...等等. 以 java 为例实现简单的增删改查 pom文件: <dependencies> & ...

  9. mac 10.12 sierra 机械键盘+ratm可编程鼠标记录

      系统:mac 10.12 sierra 键盘:机械键盘 鼠标:mad catz ratm 在mac 10.11/10.12 之前: 机械键盘:一般的机械键盘在mac上使用, alt 和 win 键 ...

  10. Linux进程资源占用分析

    [时间:2018-03] [状态:Open] [关键词:linux, 进程,proc,top] 0 引言 最近在分析安卓程序上的monkey测试日志时发现,需要了解下Linux进程资源占用情况及其查看 ...