多边形内最大半径圆。

哇没有枉费了我自闭了这么些天,大概五天前我看到这种题可能毫无思路抓耳挠腮举手投降什么的,现在已经能1A了哇。

还是先玩一会计算几何,刷个几百道

嗯这个半平面交+二分就阔以解决。虽然队友说他施展三分套三分*****

想象一下,如果一个多边形能放进去半径为r的圆,那么在每条边向里平移r之后,他的内核一定不为空。

所以我们可以二分r,然后求半平面交,平移操作其实很好处理。

1A了很开森,去快乐的玩耍惹。

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cmath>
#include <deque>
using namespace std;
typedef double db;
const db eps=1e-;
const db pi=acos(-);
int sign(db k){
if (k>eps) return ; else if (k<-eps) return -; return ;
}
int cmp(db k1,db k2){return sign(k1-k2);}
struct point{
db x,y;
point operator + (const point &k1) const{return (point){k1.x+x,k1.y+y};}
point operator - (const point &k1) const{return (point){x-k1.x,y-k1.y};}
point operator * (db k1) const{return (point){x*k1,y*k1};}
point operator / (db k1) const{return (point){x/k1,y/k1};}
db abs(){return sqrt(x*x+y*y);}
point unit(){db w=abs(); return point{x/w,y/w};}
point turn90(){ return point{-y,x};}
db getP()const { return sign(y)==||(sign(y)==&&sign(x)==-);}
};
db cross(point k1,point k2){ return k1.x*k2.y-k1.y*k2.x;}
db dot(point k1,point k2){ return k1.x*k2.x+k1.y*k2.y;}
db rad(point k1,point k2){ return atan2(cross(k1,k2),dot(k1,k2));}
int compareangle(point k1,point k2){
return k1.getP()<k2.getP()||(k1.getP()==k2.getP()&&sign(cross(k1,k2))>);
}
point getLL(point k1,point k2,point k3,point k4){
db w1=cross(k1-k3,k4-k3),w2=cross(k4-k3,k2-k3);
return (k1*w2+k2*w1)/(w1+w2);
}
struct line{
point p[];
line(point k1,point k2){p[]=k1;p[]=k2;}
point &operator[](int k){ return p[k];}
int include(point k){ return sign(cross(p[]-p[],k-p[])>);}
point dir(){ return p[]-p[];}
line push(db eps){//向左手边平移eps
//const db eps=1e-6;
point delta=(p[]-p[]).turn90().unit()*eps;
return {p[]-delta,p[]-delta};
}
};
point getLL(line k1,line k2){
return getLL(k1[],k1[],k2[],k2[]);
}
int parallel(line k1,line k2){ return sign(cross(k1.dir(),k2.dir()))==;}
int sameDir(line k1,line k2){
return parallel(k1,k2)&&sign(dot(k1.dir(),k2.dir()))==;
}
int operator <(line k1,line k2){
if(sameDir(k1,k2))return k2.include(k1[]);
return compareangle(k1.dir(),k2.dir());
}
int checkpos(line k1,line k2,line k3){ return k3.include(getLL(k1,k2));}
vector<line> getHL(vector<line> &L){
sort(L.begin(),L.end());deque<line> q;
for(int i=;i<L.size();i++){
if(i&&sameDir(L[i],L[i-]))continue;
while (q.size()>&&!checkpos(q[q.size()-],q[q.size()-],L[i]))q.pop_back();
while (q.size()>&&!checkpos(q[],q[],L[i]))q.pop_front();
q.push_back(L[i]);
}
while (q.size()>&&!checkpos(q[q.size()-],q[q.size()-],q[]))q.pop_back();
while (q.size()>&&!checkpos(q[],q[],q[q.size()-]))q.pop_front();
vector<line> ans;for(int i=;i<q.size();i++)ans.push_back(q[i]);
return ans;
}
point p[];
int n;
bool cw(){//时针
db s=;
for(int i=;i<n-;i++){
s+=cross(p[i]-p[],p[i+]-p[]);
}
return s>;
}
vector<line> L,tmp;
bool check(db x){
tmp.clear();
for(int i=;i<L.size();i++){
tmp.push_back(L[i].push(-x));
}
tmp = getHL(tmp);
if(tmp.size()>=)
return true;
return false;
}
int main(){
//freopen("3525.in","r",stdin);
while (scanf("%d",&n)&&n){
for(int i=;i<n;i++){
scanf("%lf%lf",&p[i].x,&p[i].y);
}
if(!cw())reverse(p,p+n);
for(int i=;i<n;i++){
L.push_back(line(p[i],p[(i+)%n]));
}
db l = ,r=100000.0;
while (l+0.0000001<r){
db mid = (l+r)/;
if(check(mid))
l=mid;
else
r=mid;
}
printf("%.7f\n",l);
L.clear();
}
}

poj 3525的更多相关文章

  1. poj 3525 凸多边形多大内切圆

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4758   ...

  2. POJ 3525 Most Distant Point from the Sea

    http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...

  3. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  4. 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

    按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...

  5. POJ 3525 半平面交+二分

    二分所能形成圆的最大距离,然后将每一条边都向内推进这个距离,最后所有边组合在一起判断时候存在内部点 #include <cstdio> #include <cstring> # ...

  6. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

  7. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  8. poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】

    <题目链接> 题目大意:给出一个四面环海的凸多边形岛屿,求出这个岛屿中的点到海的最远距离. 解题分析: 仔细思考就会发现,其实题目其实就是让我们求该凸多边形内内切圆的最大半径是多少.但是, ...

  9. POJ 3525 Most Distant Point from the Sea 二分+半平面交

    题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...

随机推荐

  1. Sqoop找不到主类 Error: Could not find or load main class org.apache.sqoop.Sqoop

    最近由于要使用Sqoop来到出数据到hdfs,可是发现Sqoop1.4.5跟hadoop2.X不兼容,需要对Sqoop1.4.5进行编译,编译的具体方法见:http://my.codeweblog.c ...

  2. 【MVP时间】5节课助你破解物联网硬件接入难点

    视频播放链接:https://mvp.aliyun.com/topic/10?spm=5176.8961170.detail.18.31a3yK4zyK4zUc 1.会上网的鸡,有啥不一样? http ...

  3. 汉字编码 (GB2312 GBK GB18030)

    GB2312 收录简化汉字及符号.字母.日文假名等共7445个图形字符,其中汉字占6763个 每个符号都用两个字节表示,每个字节均采用七位编码表示,习惯上 第一个字节是高字节,第二个字节是低字节 GB ...

  4. linux驱动面试题整理

    1.字符型驱动设备你是怎么创建设备文件的,就是/dev/下面的设备文件,供上层应用程序打开使用的文件? 答:mknod命令结合设备的主设备号和次设备号,可创建一个设备文件. 评:这只是其中一种方式,也 ...

  5. 初尝 nginx

    第一次尝试用 nginx,记录下几个简单命令: // 启动 start nginx // 测试并设置配置文件 nginx -t -c conf\nginx.conf // 修改配置文件后重载 ngin ...

  6. 从yield 到yield from再到python协程

    yield 关键字 def fib(): a, b = 0, 1 while 1: yield b a, b = b, a+b yield 是在:PEP 255 -- Simple Generator ...

  7. Spring的两种代理方式:JDK动态代理和CGLIB动态代理

    代理模式 代理模式的英文叫做Proxy或Surrogate,中文都可译为”代理“,所谓代理,就是一个人或者一个机构代表另一个人或者另一个机构采取行动.在一些情况下,一个客户不想或者不能够直接引用一个对 ...

  8. iOS 开发网络篇—监测网络状态

    iOS开发网络篇—监测网络状态 一.说明 在网络应用中,需要对用户设备的网络状态进行实时监控,有两个目的: (1)让用户了解自己的网络状态,防止一些误会(比如怪应用无能) (2)根据用户的网络状态进行 ...

  9. re.S、 re.M

    re.S是代表.可以匹配\n以及“  re.M是多行   code import re a = '''asdfsafhellopass: 234455 worldafdsf ''' b = re.fi ...

  10. 使用nginx搭建rtmp服务器

    一.软件需求 1.nginx源码包  下载地址:http://nginx.org/.笔者下载的是1.10.3. 2.pcre源码包.这是一个正则表达式库.nginx会用到这个开源库来做正则匹配.很多软 ...