多边形内最大半径圆。

哇没有枉费了我自闭了这么些天,大概五天前我看到这种题可能毫无思路抓耳挠腮举手投降什么的,现在已经能1A了哇。

还是先玩一会计算几何,刷个几百道

嗯这个半平面交+二分就阔以解决。虽然队友说他施展三分套三分*****

想象一下,如果一个多边形能放进去半径为r的圆,那么在每条边向里平移r之后,他的内核一定不为空。

所以我们可以二分r,然后求半平面交,平移操作其实很好处理。

1A了很开森,去快乐的玩耍惹。

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cmath>
#include <deque>
using namespace std;
typedef double db;
const db eps=1e-;
const db pi=acos(-);
int sign(db k){
if (k>eps) return ; else if (k<-eps) return -; return ;
}
int cmp(db k1,db k2){return sign(k1-k2);}
struct point{
db x,y;
point operator + (const point &k1) const{return (point){k1.x+x,k1.y+y};}
point operator - (const point &k1) const{return (point){x-k1.x,y-k1.y};}
point operator * (db k1) const{return (point){x*k1,y*k1};}
point operator / (db k1) const{return (point){x/k1,y/k1};}
db abs(){return sqrt(x*x+y*y);}
point unit(){db w=abs(); return point{x/w,y/w};}
point turn90(){ return point{-y,x};}
db getP()const { return sign(y)==||(sign(y)==&&sign(x)==-);}
};
db cross(point k1,point k2){ return k1.x*k2.y-k1.y*k2.x;}
db dot(point k1,point k2){ return k1.x*k2.x+k1.y*k2.y;}
db rad(point k1,point k2){ return atan2(cross(k1,k2),dot(k1,k2));}
int compareangle(point k1,point k2){
return k1.getP()<k2.getP()||(k1.getP()==k2.getP()&&sign(cross(k1,k2))>);
}
point getLL(point k1,point k2,point k3,point k4){
db w1=cross(k1-k3,k4-k3),w2=cross(k4-k3,k2-k3);
return (k1*w2+k2*w1)/(w1+w2);
}
struct line{
point p[];
line(point k1,point k2){p[]=k1;p[]=k2;}
point &operator[](int k){ return p[k];}
int include(point k){ return sign(cross(p[]-p[],k-p[])>);}
point dir(){ return p[]-p[];}
line push(db eps){//向左手边平移eps
//const db eps=1e-6;
point delta=(p[]-p[]).turn90().unit()*eps;
return {p[]-delta,p[]-delta};
}
};
point getLL(line k1,line k2){
return getLL(k1[],k1[],k2[],k2[]);
}
int parallel(line k1,line k2){ return sign(cross(k1.dir(),k2.dir()))==;}
int sameDir(line k1,line k2){
return parallel(k1,k2)&&sign(dot(k1.dir(),k2.dir()))==;
}
int operator <(line k1,line k2){
if(sameDir(k1,k2))return k2.include(k1[]);
return compareangle(k1.dir(),k2.dir());
}
int checkpos(line k1,line k2,line k3){ return k3.include(getLL(k1,k2));}
vector<line> getHL(vector<line> &L){
sort(L.begin(),L.end());deque<line> q;
for(int i=;i<L.size();i++){
if(i&&sameDir(L[i],L[i-]))continue;
while (q.size()>&&!checkpos(q[q.size()-],q[q.size()-],L[i]))q.pop_back();
while (q.size()>&&!checkpos(q[],q[],L[i]))q.pop_front();
q.push_back(L[i]);
}
while (q.size()>&&!checkpos(q[q.size()-],q[q.size()-],q[]))q.pop_back();
while (q.size()>&&!checkpos(q[],q[],q[q.size()-]))q.pop_front();
vector<line> ans;for(int i=;i<q.size();i++)ans.push_back(q[i]);
return ans;
}
point p[];
int n;
bool cw(){//时针
db s=;
for(int i=;i<n-;i++){
s+=cross(p[i]-p[],p[i+]-p[]);
}
return s>;
}
vector<line> L,tmp;
bool check(db x){
tmp.clear();
for(int i=;i<L.size();i++){
tmp.push_back(L[i].push(-x));
}
tmp = getHL(tmp);
if(tmp.size()>=)
return true;
return false;
}
int main(){
//freopen("3525.in","r",stdin);
while (scanf("%d",&n)&&n){
for(int i=;i<n;i++){
scanf("%lf%lf",&p[i].x,&p[i].y);
}
if(!cw())reverse(p,p+n);
for(int i=;i<n;i++){
L.push_back(line(p[i],p[(i+)%n]));
}
db l = ,r=100000.0;
while (l+0.0000001<r){
db mid = (l+r)/;
if(check(mid))
l=mid;
else
r=mid;
}
printf("%.7f\n",l);
L.clear();
}
}

poj 3525的更多相关文章

  1. poj 3525 凸多边形多大内切圆

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4758   ...

  2. POJ 3525 Most Distant Point from the Sea

    http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...

  3. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  4. 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

    按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...

  5. POJ 3525 半平面交+二分

    二分所能形成圆的最大距离,然后将每一条边都向内推进这个距离,最后所有边组合在一起判断时候存在内部点 #include <cstdio> #include <cstring> # ...

  6. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

  7. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  8. poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】

    <题目链接> 题目大意:给出一个四面环海的凸多边形岛屿,求出这个岛屿中的点到海的最远距离. 解题分析: 仔细思考就会发现,其实题目其实就是让我们求该凸多边形内内切圆的最大半径是多少.但是, ...

  9. POJ 3525 Most Distant Point from the Sea 二分+半平面交

    题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...

随机推荐

  1. 法嵌入互操作类型“SHDocVw.ShellWindowsClass”请改用适用的接口-解决方法

    点DLL名字,---属性----------嵌入互操作类型(设置为false)

  2. springboot + websocket + spring-messaging实现服务器向浏览器广播式

    目录结构 pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http:// ...

  3. Why validation set ?

    Let's assume that you are training a model whose performance depends on a set of hyperparameters. In ...

  4. iOS 获取IP

    #import <ifaddrs.h> //获取IP #import <arpa/inet.h> //只能获取WIFI下的IP地址 + (NSString *)getIPAdd ...

  5. reStructuredText语法简单说明

    reStructuredText 是扩展名为.rst的纯文本文件,含义为"重新构建的文本"",也被简称为:RST或reST. 官方网址: http://docutils. ...

  6. Linux命令行烧录树莓派镜像至SD卡

    首先下载镜像压缩包 验证压缩包的未被串改 1 sha1sum 2013-09-25-wheezy-raspbian.zip 对此命令的输出结果和官网给出的SHA-1 Checksum进行比对,如果一致 ...

  7. Elasticsearch集成HanLP分词器-个人学习

    1.通过git下载分词器代码. 连接如下:https://gitee.com/hualongdata/hanlp-ext hanlp官网如下:http://hanlp.linrunsoft.com/ ...

  8. GUI编程及文件对话框的使用

    import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.io.File; import ...

  9. Linux常用指令笔记

    目标:统计当前目录下java文件的个数 指令:`ls -R ./ | grep .java$ | wc -l` 原理:`ls -R ./`列出当前文件夹下的所有FILE,包括目录以及文件;`grep ...

  10. python 中有趣的库tqdm

    Tqdm 是 Python 进度条库,可以在 Python 长循环中添加一个进度提示信息用法:tqdm(iterator) # 方法1: import time from tqdm import tq ...