How to do sparse input text classification(dnn) using tensorflow
You can get complete example code from
https://github.com/chenghuige/hasky/tree/master/applications
Including
- How to parse libsvm dataset file to tfrecords
- Reading tfrecords and do dnn/logistic regresssion classifciation/regresssion
- Train + evaluate
- See train process (loss and metric track) in tensorboard
- Show how to use melt.train_flow to handle all other things(optimizer, learning rate, model saving, log …)
The main realated code:
melt.tfrecords/libsvm_decode #parsing libsvm file
melt.models.mlp
def forward(inputs,
num_outputs,
input_dim=None,
hiddens=[200],
activation_fn=tf.nn.relu,
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
biases_initializer=init_ops.zeros_initializer(),
biases_regularizer=None,
reuse=None,
scope=None
):
text-classfication/model.py shows how to use this
You must specify num_outputs and input_dim for sparse input dataset
For example 10 classes classficiation problem then num_outputs=10
If you do regresssion then num_outputs=1
input_dim should be the same as your dataset num input features
You may change hiddens, the default is [200], means only 1 hidden layer size 200,
You can use more hiddens like [200, 100, 100] means 3 hidden layers with size 200,100,100
You may also set hiddens [] empty , means you only do logistic regression
What's the diff between melt.layers.fully_connected and tf.contrib.layers.fully_connected?
Well similary but we will also deal with sparse input, the main difference in here
We use melt.matmul
|
def matmul(X, w): |
|
|
if isinstance(X, tf.Tensor): |
|
|
return tf.matmul(X,w) |
|
|
else: |
|
|
#X[0] index, X[1] value |
|
|
return tf.nn.embedding_lookup_sparse(w, X[0], X[1], combiner='sum') |
来自 <https://github.com/chenghuige/tensorflow-example/blob/master/util/melt/ops/ops.py>
Tensorboard show:


How to do sparse input text classification(dnn) using tensorflow的更多相关文章
- [转] Implementing a CNN for Text Classification in TensorFlow
Github上的一个开源项目,文档讲得极清晰 Github - https://github.com/dennybritz/cnn-text-classification-tf 原文- http:// ...
- [Tensorflow] RNN - 04. Work with CNN for Text Classification
Ref: Combining CNN and RNN for spoken language identification Ref: Convolutional Methods for Text [1 ...
- [Bayes] Maximum Likelihood estimates for text classification
Naïve Bayes Classifier. We will use, specifically, the Bernoulli-Dirichlet model for text classifica ...
- 论文阅读:《Bag of Tricks for Efficient Text Classification》
论文阅读:<Bag of Tricks for Efficient Text Classification> 2018-04-25 11:22:29 卓寿杰_SoulJoy 阅读数 954 ...
- 论文翻译——Character-level Convolutional Networks for Text Classification
论文地址 Abstract Open-text semantic parsers are designed to interpret any statement in natural language ...
- input:text 的value 和 attribute('value') 不是一回事
如题,input:text 当手工输入字符改变其值时,两者就不一样了. 要获得手工输入,不要用attribute('value'), 直接使用value: function getbyid(id){ ...
- jquery循环table中tbody的tr中input:text,将值进行拼接传入控制器并返回状态和描述
引用jquery $(function(){ $("#按钮id").click(function(){ var nums="";//变量 $("#ta ...
- input text输完自动跳到下一个
应用场景: 短信验证码输入 效果: input输入框,输入完以后自动跳转到下一个 思路: 四个输入框 进入聚焦到第一个输入框 第一个输入框输完一个字符后自动聚焦到下一个输入框 1.四个输入框 < ...
- RobotFramework自动化测试框架-移动手机自动化测试Input Text和Click Button关键字的使用
Input Text和Click Button Input Text 关键字一般用来给输入框进行输入操作,该关键字接收两个参数[ locator | text ]. 示例1:启动安卓手机上一个APP的 ...
随机推荐
- Mybatis JDBC->Mybatis
1 什么是JDBC Java程序都是通过JDBC(Java Data Base Connectivity)连接数据库的,通过SQL对数据库编程.JDBC是由SUN公司(SUN公司已被Oracle公司收 ...
- PhantomJS、CasperJS安装配置图文详解
目前网站主流的加载方式: 一种是同步加载:另一种是异步加载,也即我们常说的用ajax.对于同步加载的网站,普通的爬虫程序轻松就能搞定.但是对于那种异步请求数据的网站,通常使用selenium+Phan ...
- modelform的操作以及验证
1,model的两个功能 1,数据库操作 2,验证只有一个clean方法作为钩子来操作,方法比较少 2,form(专门用来做验证的) 根据form里面写的类,类里面的字段,这些字段里有内置的的正则表达 ...
- 小甲鱼Python第五讲课后习题
0.Python中,int表示整型 bool:布尔类型 float:浮点型 str:字符串类型 1.为什么布尔类型(bool)的TRUE和FALSE分别用0和1表示? 计算机只认识二进制,由于二进制只 ...
- js扩展运算符(spread)三个点(...)
常见用法: 1.该运算符主要用于函数调用. function push(array, ...items) { array.push(...items); } function add(x, y) { ...
- IPAddress.Any 解决本地ip和服务器ip切换问题
IPAddress.Any表示本机ip,换言之,如果服务器绑定此地址,则表示侦听本机所有ip对应的那个端口(本机可能有多个ip或只有一个ip)IPAddress.Any微软给出的解释是:Provide ...
- 获取gcc和clang的内置宏定义
下面是对Gcc的内置宏定义的解释: https://gcc.gnu.org/onlinedocs/cpp/Common-Predefined-Macros.html https://github.co ...
- python测试开发django-55.xadmin使用markdown文档编辑器(django-mdeditor)
前言 markdown是一个非常好的编辑器,用过的都说好,如果搭建一个博客平台的话,需要在后台做文章编辑,可以整合一个markdown的文本编辑器. github上关于django的markdown插 ...
- Go语言栈定义及相关方法实现
// stack 栈 package Algorithm import ( "errors" "reflect" ) // 栈定义 type Stack str ...
- 3D打印开源软件Cura分析(1) 【转】
http://www.sohu.com/a/236241465_100000368 Cura是Ultimaker公司开发的3D打印开源软件,在所有的3D打印开源软件中应属上乘之作,很有研究的价值.国内 ...