SPOJ COT3.Combat on a tree(博弈论 Trie合并)
\(Description\)
给定一棵\(n\)个点的树,每个点是黑色或白色。两个人轮流操作,每次可以选一个白色的点,将它到根节点路径上的所有点染黑。不能操作的人输,求先手是否能赢。如果能,输出第一步选择哪些节点能赢。
\(n\leq10^5\)。
\(Solution\)
对于叶子节点,如果能染色,\(SG(x)=1\),否则\(=0\)。
考虑从下往上算每棵子树的\(SG\)值。设\(SG(x)\)表示\(x\)子树的\(SG\)值,\(g(x)\)表示对\(x\)这棵子树操作能得到的后继的\(SG\)值集合(只考虑\(x\)子树),那么\(SG(x)=\mathbb{mex}\{g(x)\}\)。
考虑如何计算\(g(x)\)。令\(sum[x]=sg(v_1)\ \mathbb{xor}\ sg(v_2)\ \mathbb{xor}...,\ v_i\in son[x]\)。
若\(x\)是黑点,假设这次操作选了\(v_i\)子树中的某个点,那么其它子树状态不变,\(v_i\)子树的后继状态会变成\(g(v_i)\)中的某个,所以\(g(x)=sum[x]\ \mathbb{xor}\ sg(v_i)\ \mathbb{xor}\ (g(v_i)中的某个值)\)。
把子树内每个\(g(v_i)\)整体\(\mathbb{xor}\)一个数,合并起来,就可以得到\(g(x)\)了。
若\(x\)是白点,多了一种选\(x\)的后继,选\(x\)后得到状态的\(SG\)值就是\(sum[x]\)。所以在\(g(x)\)中再插入一个\(sum[x]\)即可。
还要支持求\(\mathbb{mex}\),可以用\(01Trie\)维护。合并的时候可以启发式合并,\(O(n\log^2n)\),也可以类似线段树合并做到\(O(n\log n)\)。
对于第二问,考虑选择一个节点后局面的\(SG\)值。容易发现就是除去它到根节点路径上的点的所有点的\(SG\)值的异或和。
记\(up[x]\)表示除去\(x\)到根节点路径上的点外,所有节点的\(SG\)值异或和,那么\(up[x]=up[fa[x]]^{\wedge}sum[fa[x]]^{\wedge}SG(x)\)。选择\(x\)后\(x\)的各棵子树是独立的,局面的\(SG\)值就是\(up[x]^{\wedge}sum[x]\)(\(up\)也可以直接\(DFS\)的时候传个参)。
所以如果\(up[x]^{\wedge}sum[x]=0\),选这个点就是必胜的。
这个\(SG\)值的最大值是啥啊...
注意\(Trie\)要特判叶子的地方(尤其是Merge
,注意像线段树合并一样判下叶子)(我怎么老是写错...)。
//0.11s 35M
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define Bit 16
#define gc() getchar()
#define MAXIN 500000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e5+5;
int Enum,H[N],nxt[N<<1],to[N<<1],root[N],sg[N],sum[N],up[N];
bool col[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Trie
{
#define S N*20
#define ls son[x][0]
#define rs son[x][1]
int tot,son[S][2],tag[S];
bool full[S];
#define Update(x) full[x]=full[ls]&&full[rs]
inline void Upd(int x,int v,int dep)
{
// if(dep<0) return;
if(v>>dep&1) std::swap(ls,rs);
tag[x]^=v;
}
inline void PushDown(int x,int dep)
{
if(dep&&tag[x]) Upd(ls,tag[x],dep-1), Upd(rs,tag[x],dep-1), tag[x]=0;
}
void Insert(int &x,int v,int dep)
{
x=++tot;
if(dep<0) {full[x]=1; return;}
v>>dep&1 ? Insert(rs,v,dep-1) : Insert(ls,v,dep-1);
}
int Merge(int x,int y,int dep)
{
if(!x||!y) return x|y;
if(dep<0) return x;
PushDown(x,dep), PushDown(y,dep);
ls=Merge(ls,son[y][0],dep-1), rs=Merge(rs,son[y][1],dep-1);
Update(x); return x;
}
int Mex(int x,int dep)
{
if(!x||dep<0) return 0;
PushDown(x,dep);
return full[ls]?(1<<dep)+Mex(rs,dep-1):Mex(ls,dep-1);
}
}T;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
}
void DFS1(int x,int fa)
{
if(!col[x]) T.Insert(root[x],0,Bit);
int s=0;
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa)
DFS1(v,x), s^=sg[v], T.Upd(root[v],sg[v],Bit), root[x]=T.Merge(root[x],root[v],Bit);
if(s) T.Upd(root[x],s,Bit);
sum[x]=s, sg[x]=T.Mex(root[x],Bit);
}
void DFS2(int x,int fa)
{
up[x]=up[fa]^sum[fa]^sg[x];
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa) DFS2(v,x);
}
int main()
{
const int n=read();
for(int i=1; i<=n; ++i) col[i]=read();
for(int i=1; i<n; ++i) AE(read(),read());
DFS1(1,0), sum[0]=sg[1], DFS2(1,0);
bool f=0;
for(int x=1; x<=n; ++x) if(!col[x]&&!(sum[x]^up[x])) f=1, printf("%d\n",x);
if(!f) puts("-1");
return 0;
}
SPOJ COT3.Combat on a tree(博弈论 Trie合并)的更多相关文章
- SPOJ COT3 Combat on a tree(Trie树、线段树的合并)
题目链接:http://www.spoj.com/problems/COT3/ Alice and Bob are playing a game on a tree of n nodes.Each n ...
- SPOJ COT3 - Combat on a tree
/* 考虑直接使用暴力来算的话 SG[i]表示以i为根的子树的SG值, 然后考虑枚举删除那个子树节点, 然后求拆成的树的sg异或值, 求mex即可 复杂度三次方 然后考虑尝试 整体来做 发现对于每次子 ...
- BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 5217 Solved: 1233 ...
- BZOJ 2588: Spoj 10628. Count on a tree 树上跑主席树
2588: Spoj 10628. Count on a tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/J ...
- Bzoj 2588: Spoj 10628. Count on a tree 主席树,离散化,可持久,倍增LCA
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2588 2588: Spoj 10628. Count on a tree Time Limit ...
- BZOJ 2588: Spoj 10628. Count on a tree( LCA + 主席树 )
Orz..跑得还挺快的#10 自从会树链剖分后LCA就没写过倍增了... 这道题用可持久化线段树..点x的线段树表示ROOT到x的这条路径上的权值线段树 ----------------------- ...
- 【BZOJ2589】 Spoj 10707 Count on a tree II
BZOJ2589 Spoj 10707 Count on a tree II Solution 吐槽:这道题目简直...丧心病狂 如果没有强制在线不就是树上莫队入门题? 如果加了强制在线怎么做? 考虑 ...
- 【BZOJ2588】Spoj 10628. Count on a tree 主席树+LCA
[BZOJ2588]Spoj 10628. Count on a tree Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lasta ...
- 【SPOJ】QTREE7(Link-Cut Tree)
[SPOJ]QTREE7(Link-Cut Tree) 题面 洛谷 Vjudge 题解 和QTREE6的本质是一样的:维护同色联通块 那么,QTREE6同理,对于两种颜色分别维护一棵\(LCT\) 每 ...
随机推荐
- 网络编程—tcp
一.TCP简介 TCP介绍 TCP协议,传输控制协议(英语:Transmission Control Protocol,缩写为 TCP)是一种面向连接的.可靠的.基于字节流的传输层通信协议,由IETF ...
- 一道面试题 vuex缺点?
最近去面试的时候,面试官有一道题是让我阐述用vuex的优缺点,优点倒还好说,这个缺点还真没有认识到,有道友可以帮忙解惑嘛? 2 回答 慕标5265247 这种问题一般都有通用回答套路.一件挺好的东西, ...
- ubuntu 手动更新源 以及使用sudo update与upgrade的作用及区别
一.今天更新一下我的ubuntu系统,用了几个源发现不怎么好用 上网查了一下发现有说阿里云的源挺好用 然后我试了一下 下载速度还挺快,下面分享一下怎么手动添加源列表 1.最好先做一下备份 sudo c ...
- Angularjs 学习笔记-2017-02-05-初识Angular及app、model、controller、repeat指令和fileter、orderBy
ng-app 定义作用域,从作用域处开始执行ng命令指令 ng-model 数据绑定字符,用于双向数据绑定 ng-controller ng控制台,定义function name($scope)来 ...
- 使用jquery.more.js上滑加载更多
html: <div id="more"> <div class="single_item"> <div class=" ...
- es6 模板字符串
模板字符串 提供构造字符串的语法糖,在 Prel/python 等语言中也都有类似特性. 1.反引号模板,可以换行 2.反引号模板,可以嵌套 用+``来嵌套 好处:语法更加简洁 var name=&q ...
- mysql的下载与安装
官网 下载 https://www.mysql.com/ 依次点击:downloads>community>mysql community server,如图所示 image.png ...
- Ng Alain使用 - cli和克隆两种方式
感觉没啥要写的,但是在查看相关资料的过程中发现不少浮夸的人,可以说是完全不阅读官方文档,操作完全无厘头,,创建了删,配置,再删除,,,扯蛋....., 方式一:CLI(推荐) # 确保使用的是最新版本 ...
- java内嵌jetty服务器
有的时候需要将一个简单的功能封装为服务,相比python使用flask.web.py的简洁,使用java-web显得太重量级,幸好,我们可以直接在java项目中使用jetty来搭建简易服务 1.pom ...
- BZOJ1001 [BeiJing2006]狼抓兔子 最小割 对偶图 最短路
原文链接http://www.cnblogs.com/zhouzhendong/p/8686871.html 题目传送门 - BZOJ1001 题意 长成上面那样的网格图求最小割. $n,m\leq ...