#2664. 「NOI2013」向量内积

两个 \(d\) 维向量 \(A=[a_1, a_2 ,...,a_d]\) 与 \(B=[b_1 ,b_2 ,...,b_d]\) 的内积为其相对应维度的权值的乘积和,即:

\[(A,B) = \displaystyle \sum_{i=1}^d{a_ib_i} = a_1b_1 + a_2b_2 + \ldots + a_db_d
\]

现有 \(n\) 个 \(d\) 维向量 \(x_1, \ldots, x_n\),小喵喵想知道是否存在两个向量的内积为 \(k\) 的倍数。请帮助她解决这个问题。


输入格式

第一行包含 \(3\) 个正整数 \(n,d,k\),分别表示向量的个数、维数以及待检测的倍数。

接下来 \(n\) 行每行有 \(d\) 个非负整数,其中第 \(i\) 行的第 \(j\) 个整数表示向量 \([x_i]\) 的第 \(j\) 维权值 \(x_{i,j}\)。

输出格式

包含两个整数,用空格隔开。

如果存在两个向量 \(x_p,x_q\) 的内积为 \(k\) 的整数倍,则输出两个向量的编号 \(p\) 与 \(q\)(要求 \(p<q\))。如果存在多组这样的向量组合,输出其中任意一组即可。

若不存在这样的向量组合,则输出两个 \(−1\)。


数据范围与提示

测试点编号 n d k \(x_i\)
\(1\) \(2\) \(20\) \(2\) \(\le 10\)
\(2\) \(5\) \(20\) \(2\) \(\le 10\)
\(3\) \(10\) \(20\) \(3\) \(\le 10\)
\(4\) \(20\) \(20\) \(2\) \(\le 100\)
\(5\) \(50\) \(20\) \(3\) \(\le 100\)
\(6\) \(50\) \(50\) \(2\) \(\le 1000\)
\(7\) \(50\) \(50\) \(3\) \(\le 3000000\)
\(8\) \(80\) \(80\) \(2\) \(\le 2000000\)
\(9\) \(100\) \(100\) \(3\) \(\le 3000000\)
\(10\) \(500\) \(100\) \(3\) \(\le 3000000\)
\(11\) \(1000\) \(100\) \(2\) \(\le 2000000\)
\(12\) \(1000\) \(100\) \(3\) \(\le 3000000\)
\(13\) \(10000\) \(100\) \(2\) \(< 10\)
\(14\) \(10000\) \(100\) \(3\) \(< 10\)
\(15\) \(15000\) \(100\) \(2\) \(< 10\)
\(16\) \(18000\) \(100\) \(2\) \(< 10\)
\(17\) \(20000\) \(100\) \(2\) \(< 10\)
\(18\) \(50000\) \(30\) \(3\) \(< 10\)
\(19\) \(80000\) \(30\) \(3\) \(< 10\)
\(20\) \(100000\) \(30\) \(3\) \(< 10\)

向量点乘的过程有点像一个行向量和一个列向量相乘,然后我们把原始向量排成一个矩阵\(A\),然后令\(D=A*A^T\)。

那么\(D_{i,j}\)就代表向量\(i\)和向量\(j\)做内积。

突破口在\(\bmod 2\)上。

现在矩阵所有元素在\(\bmod 2\)下

我们设一个\(n\times n\)的全\(1\)矩阵\(E\),然后通过一些随机化的方法比较\(D\)和\(E\)有哪里不相等。

我们可以随机几个\(1\times n\)的向量\(C\),然后判断是否有

\[C\times A\times A^T\equiv C\times E\pmod 2
\]

并且我们可以判断出哪一行不相等,然后可以暴力枚举与之匹配的另一个。

或者随机一下原始向量的排列顺序。

至于为什么随机次数是常数次,可以从Hash的角度感性理解

然后\(\bmod 3\)也差不多

注意到\(2^2\equiv 1\pmod 3,1^2\equiv 1\pmod 3\),我们把矩阵\(D'_{i,j}=D^2_{i,j}\)搞出来就可以了

把这个式子拆开可以发现我们需要把组成\(A\)的每一个向量搞出\(1\times d^2\)的,即\(A'_{i,(j-1)d+k}=A_{i,j}*A_{i,k}\)

然后和\(2\)是一样的


Code:

#include <cstdio>
#include <cstring>
#include <cctype>
#include <cstdlib>
#include <algorithm>
int read()
{
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
int n,d,k;
namespace beecute
{
int yuy[20010][110],bee[110],dew[20010],c[20010];
void work()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=d;j++)
yuy[i][j]=read()&1;
int Dew=5;
while(Dew--)
{
memset(dew,0,sizeof dew);
memset(bee,0,sizeof bee);
for(int i=1;i<=n;i++) c[i]=rand()&1;
for(int i=1;i<=d;i++)
for(int j=1;j<=n;j++)
if(c[j])
bee[i]=bee[i]+yuy[j][i]&1;
for(int i=1;i<=n;i++)
for(int j=1;j<=d;j++)
dew[i]=(dew[i]+bee[j]*yuy[i][j])&1;
for(int i=1;i<=n;i++)
if(dew[i]!=c[i])
{
for(int j=1;j<=n;j++)
{
int sum=0;
for(int k=1;k<=d;k++)
sum=(sum+yuy[i][k]*yuy[j][k])&1;
if(!sum)
{
if(i<j) printf("%d %d\n",i,j);
else printf("%d %d\n",j,i);
return;
}
}
}
}
puts("-1");
}
}
namespace beelovely
{
int yuy[100010][101],bee[10010],dew[100010],c[100010];
void work()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=d;j++)
yuy[i][j]=read()%3;
for(int i=1;i<=d;i++)
for(int j=1;j<=d;j++)
for(int k=1;k<=n;k++)
(bee[(i-1)*d+j]+=yuy[k][i]*yuy[k][j])%=3;
int Dew=5;
while(Dew--)
{
memset(dew,0,sizeof dew);
memset(bee,0,sizeof bee);
for(int i=1;i<=n;i++) c[i]=rand();
for(int i=1;i<=d;i++)
for(int k=1;k<=n;k++)
if(c[k])
bee[i]=(bee[i]+yuy[k][i]*yuy[k][j])%3;
for(int i=1;i<=n;i++)
for(int j=1;j<=d;j++)
for(int k=1;k<=d;k++)
dew[i]=(dew[i]+bee[(j-1)*d+k]*yuy[p[i]][j]*yuy[p[i]][k])%3;
for(int i=1;i<=n;i++)
if(dew[i]!=c[i])
{
for(int j=1;j<=n;j++)
{
int sum=0;
for(int k=1;k<=d;k++)
sum=(sum+yuy[i][k]*yuy[j][k])&1;
if(!sum)
{
if(i<j) printf("%d %d\n",i,j);
else printf("%d %d\n",j,i);
return;
}
}
}
}
puts("-1");
}
}
int main()
{
n=read(),d=read(),k=read();
if(k==2) beecute::work();
else beelovely::work();
return 0;
}

2019.2.11

LOJ 2664. 「NOI2013」向量内积 解题报告的更多相关文章

  1. 「SDOI2014」向量集 解题报告

    「SDOI2014」向量集 维护一个向量集合,在线支持以下操作: A x y :加入向量 \((x, y)\): Q x y l r:询问第 \(L\) 个到第 \(R\) 个加入的向量与向量 \(( ...

  2. loj#2665. 「NOI2013」树的计数

    目录 题目链接 题解 代码 题目链接 loj#2665. 「NOI2013」树的计数 题解 求树高的期望 对bfs序分层 考虑同时符合dfs和bfs序的树满足什么条件 第一个点要强制分层 对于bfs序 ...

  3. 「FJOI2016」神秘数 解题报告

    「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就 ...

  4. 「ZJOI2016」大森林 解题报告

    「ZJOI2016」大森林 神仙题... 很显然线段树搞不了 考虑离线操作 我们只搞一颗树,从位置1一直往后移动,然后维护它的形态试试 显然操作0,1都可以拆成差分的形式,就是加入和删除 因为保证了操 ...

  5. 「SCOI2016」背单词 解题报告

    「SCOI2016」背单词 出题人sb 题意有毒 大概是告诉你,你给一堆n个单词安排顺序 如果当前位置为x 当前单词的后缀没在这堆单词出现过,代价x 这里的后缀是原意,但不算自己,举个例子比如abc的 ...

  6. 「NOI2015」寿司晚宴 解题报告

    「NOI2015」寿司晚宴 这个题思路其实挺自然的,但是我太傻了...最开始想着钦定一些,结果发现假了.. 首先一个比较套路的事情是状压前8个质数,后面的只会在一个数出现一次的再想办法就好. 然后发现 ...

  7. 「SCOI2015」国旗计划 解题报告

    「SCOI2015」国旗计划 蛮有趣的一个题 注意到区间互不交错,那么如果我们已经钦定了一个区间,它选择的下一个区间是唯一的,就是和它有交且右端点在最右边的,这个可以单调队列预处理一下 然后往后面跳拿 ...

  8. 「JLOI2015」骗我呢 解题报告?

    「JLOI2015」骗我呢 这什么神仙题 \[\color{purple}{Link}\] 可以学到的东西 对越过直线的东西翻折进行容斥 之类的..吧? Code: #include <cstd ...

  9. 「JLOI2015」城池攻占 解题报告

    「JLOI2015」城池攻占 注意到任意两个人的战斗力相对大小的不变的 可以离线的把所有人赛到初始点的堆里 然后做启发式合并就可以了 Code: #include <cstdio> #in ...

随机推荐

  1. MiniProfiler工具介绍(监控EF生成的SQL语句)--EF,迷你监控器,哈哈哈

    十年河东,十年河西,莫欺少年穷... 今天是抄袭的别人的博客,不过我感觉蛮好,挺有用,特别是老板让你优化EF项目SQL耗时的情况下,你可以采用这种方式来优化你的LINQ. 时间很宝贵,废话还是不多说, ...

  2. BZOJ 3561 DZY Loves Math VI

    BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...

  3. [Socket]Socket聊天小程序

    一个简单是Socket聊天小程序,读写操作在不同的线程中.服务器端采用线程池. 1.Server import java.io.IOException; import java.net.ServerS ...

  4. GitFlow原理浅析

    一.Git优点 分布式存储 , 本地仓库包含了远程仓库的所有内容 . 安全性高 , 远程仓库文件丢失了也不怕 优秀的分支模型 , 创建/合并分支非常的方便 方便快速 , 由于代码本地都有存储 , 所以 ...

  5. Object-Oriented(一)创建对象

    自用备忘笔记 前言 虽然可以使用 Object 和对象字面量创建对象,但是如果要创建大量相似的对象又显得麻烦.为解决这个问题,人们开始使用工厂模式的变种. 工厂模式 function person(n ...

  6. 浅谈JS的作用域链(一)

    JS的执行环境 执行环境(Execution context,EC)或执行上下文,是JS中一个极为重要的概念. 在JavaScript中有三种代码运行环境: Global Code JavaScrip ...

  7. Python基础系列讲解——random模块随机数的生成

    随机数参与的应用场景大家一定不会陌生,比如密码加盐时会在原密码上关联一串随机数,蒙特卡洛算法会通过随机数采样等等.Python内置的random模块提供了生成随机数的方法,使用这些方法时需要导入ran ...

  8. linux-文件数据操作awk命令

    最后一列是:交互外壳 单引号里的内容不会被bash扩展 cut 同样可以做到 "\t" 制表符 cut 和 sed 结合同样可以实现 扩展:匿名方法可以有多个,and方法只能有一个 ...

  9. PLSQL使用技巧 如何设置默认显示My Objects、记住密码等

    https://www.cnblogs.com/yilinzi/p/7144852.html PL/SQL Developer实现双击table查询 https://blog.csdn.net/zhy ...

  10. JS 实现计算一段文字中的字节数,字母数,数字数,行数,汉字数。

    看到了匹配,第一个想到了用正则表达式,哈哈,果然很方便.不过正则表达式高深莫测!我还没有研究明白啊..目前学了点皮毛.代码如下: <!DOCTYPE html PUBLIC "-//W ...