#2664. 「NOI2013」向量内积

两个 \(d\) 维向量 \(A=[a_1, a_2 ,...,a_d]\) 与 \(B=[b_1 ,b_2 ,...,b_d]\) 的内积为其相对应维度的权值的乘积和,即:

\[(A,B) = \displaystyle \sum_{i=1}^d{a_ib_i} = a_1b_1 + a_2b_2 + \ldots + a_db_d
\]

现有 \(n\) 个 \(d\) 维向量 \(x_1, \ldots, x_n\),小喵喵想知道是否存在两个向量的内积为 \(k\) 的倍数。请帮助她解决这个问题。


输入格式

第一行包含 \(3\) 个正整数 \(n,d,k\),分别表示向量的个数、维数以及待检测的倍数。

接下来 \(n\) 行每行有 \(d\) 个非负整数,其中第 \(i\) 行的第 \(j\) 个整数表示向量 \([x_i]\) 的第 \(j\) 维权值 \(x_{i,j}\)。

输出格式

包含两个整数,用空格隔开。

如果存在两个向量 \(x_p,x_q\) 的内积为 \(k\) 的整数倍,则输出两个向量的编号 \(p\) 与 \(q\)(要求 \(p<q\))。如果存在多组这样的向量组合,输出其中任意一组即可。

若不存在这样的向量组合,则输出两个 \(−1\)。


数据范围与提示

测试点编号 n d k \(x_i\)
\(1\) \(2\) \(20\) \(2\) \(\le 10\)
\(2\) \(5\) \(20\) \(2\) \(\le 10\)
\(3\) \(10\) \(20\) \(3\) \(\le 10\)
\(4\) \(20\) \(20\) \(2\) \(\le 100\)
\(5\) \(50\) \(20\) \(3\) \(\le 100\)
\(6\) \(50\) \(50\) \(2\) \(\le 1000\)
\(7\) \(50\) \(50\) \(3\) \(\le 3000000\)
\(8\) \(80\) \(80\) \(2\) \(\le 2000000\)
\(9\) \(100\) \(100\) \(3\) \(\le 3000000\)
\(10\) \(500\) \(100\) \(3\) \(\le 3000000\)
\(11\) \(1000\) \(100\) \(2\) \(\le 2000000\)
\(12\) \(1000\) \(100\) \(3\) \(\le 3000000\)
\(13\) \(10000\) \(100\) \(2\) \(< 10\)
\(14\) \(10000\) \(100\) \(3\) \(< 10\)
\(15\) \(15000\) \(100\) \(2\) \(< 10\)
\(16\) \(18000\) \(100\) \(2\) \(< 10\)
\(17\) \(20000\) \(100\) \(2\) \(< 10\)
\(18\) \(50000\) \(30\) \(3\) \(< 10\)
\(19\) \(80000\) \(30\) \(3\) \(< 10\)
\(20\) \(100000\) \(30\) \(3\) \(< 10\)

向量点乘的过程有点像一个行向量和一个列向量相乘,然后我们把原始向量排成一个矩阵\(A\),然后令\(D=A*A^T\)。

那么\(D_{i,j}\)就代表向量\(i\)和向量\(j\)做内积。

突破口在\(\bmod 2\)上。

现在矩阵所有元素在\(\bmod 2\)下

我们设一个\(n\times n\)的全\(1\)矩阵\(E\),然后通过一些随机化的方法比较\(D\)和\(E\)有哪里不相等。

我们可以随机几个\(1\times n\)的向量\(C\),然后判断是否有

\[C\times A\times A^T\equiv C\times E\pmod 2
\]

并且我们可以判断出哪一行不相等,然后可以暴力枚举与之匹配的另一个。

或者随机一下原始向量的排列顺序。

至于为什么随机次数是常数次,可以从Hash的角度感性理解

然后\(\bmod 3\)也差不多

注意到\(2^2\equiv 1\pmod 3,1^2\equiv 1\pmod 3\),我们把矩阵\(D'_{i,j}=D^2_{i,j}\)搞出来就可以了

把这个式子拆开可以发现我们需要把组成\(A\)的每一个向量搞出\(1\times d^2\)的,即\(A'_{i,(j-1)d+k}=A_{i,j}*A_{i,k}\)

然后和\(2\)是一样的


Code:

#include <cstdio>
#include <cstring>
#include <cctype>
#include <cstdlib>
#include <algorithm>
int read()
{
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
int n,d,k;
namespace beecute
{
int yuy[20010][110],bee[110],dew[20010],c[20010];
void work()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=d;j++)
yuy[i][j]=read()&1;
int Dew=5;
while(Dew--)
{
memset(dew,0,sizeof dew);
memset(bee,0,sizeof bee);
for(int i=1;i<=n;i++) c[i]=rand()&1;
for(int i=1;i<=d;i++)
for(int j=1;j<=n;j++)
if(c[j])
bee[i]=bee[i]+yuy[j][i]&1;
for(int i=1;i<=n;i++)
for(int j=1;j<=d;j++)
dew[i]=(dew[i]+bee[j]*yuy[i][j])&1;
for(int i=1;i<=n;i++)
if(dew[i]!=c[i])
{
for(int j=1;j<=n;j++)
{
int sum=0;
for(int k=1;k<=d;k++)
sum=(sum+yuy[i][k]*yuy[j][k])&1;
if(!sum)
{
if(i<j) printf("%d %d\n",i,j);
else printf("%d %d\n",j,i);
return;
}
}
}
}
puts("-1");
}
}
namespace beelovely
{
int yuy[100010][101],bee[10010],dew[100010],c[100010];
void work()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=d;j++)
yuy[i][j]=read()%3;
for(int i=1;i<=d;i++)
for(int j=1;j<=d;j++)
for(int k=1;k<=n;k++)
(bee[(i-1)*d+j]+=yuy[k][i]*yuy[k][j])%=3;
int Dew=5;
while(Dew--)
{
memset(dew,0,sizeof dew);
memset(bee,0,sizeof bee);
for(int i=1;i<=n;i++) c[i]=rand();
for(int i=1;i<=d;i++)
for(int k=1;k<=n;k++)
if(c[k])
bee[i]=(bee[i]+yuy[k][i]*yuy[k][j])%3;
for(int i=1;i<=n;i++)
for(int j=1;j<=d;j++)
for(int k=1;k<=d;k++)
dew[i]=(dew[i]+bee[(j-1)*d+k]*yuy[p[i]][j]*yuy[p[i]][k])%3;
for(int i=1;i<=n;i++)
if(dew[i]!=c[i])
{
for(int j=1;j<=n;j++)
{
int sum=0;
for(int k=1;k<=d;k++)
sum=(sum+yuy[i][k]*yuy[j][k])&1;
if(!sum)
{
if(i<j) printf("%d %d\n",i,j);
else printf("%d %d\n",j,i);
return;
}
}
}
}
puts("-1");
}
}
int main()
{
n=read(),d=read(),k=read();
if(k==2) beecute::work();
else beelovely::work();
return 0;
}

2019.2.11

LOJ 2664. 「NOI2013」向量内积 解题报告的更多相关文章

  1. 「SDOI2014」向量集 解题报告

    「SDOI2014」向量集 维护一个向量集合,在线支持以下操作: A x y :加入向量 \((x, y)\): Q x y l r:询问第 \(L\) 个到第 \(R\) 个加入的向量与向量 \(( ...

  2. loj#2665. 「NOI2013」树的计数

    目录 题目链接 题解 代码 题目链接 loj#2665. 「NOI2013」树的计数 题解 求树高的期望 对bfs序分层 考虑同时符合dfs和bfs序的树满足什么条件 第一个点要强制分层 对于bfs序 ...

  3. 「FJOI2016」神秘数 解题报告

    「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就 ...

  4. 「ZJOI2016」大森林 解题报告

    「ZJOI2016」大森林 神仙题... 很显然线段树搞不了 考虑离线操作 我们只搞一颗树,从位置1一直往后移动,然后维护它的形态试试 显然操作0,1都可以拆成差分的形式,就是加入和删除 因为保证了操 ...

  5. 「SCOI2016」背单词 解题报告

    「SCOI2016」背单词 出题人sb 题意有毒 大概是告诉你,你给一堆n个单词安排顺序 如果当前位置为x 当前单词的后缀没在这堆单词出现过,代价x 这里的后缀是原意,但不算自己,举个例子比如abc的 ...

  6. 「NOI2015」寿司晚宴 解题报告

    「NOI2015」寿司晚宴 这个题思路其实挺自然的,但是我太傻了...最开始想着钦定一些,结果发现假了.. 首先一个比较套路的事情是状压前8个质数,后面的只会在一个数出现一次的再想办法就好. 然后发现 ...

  7. 「SCOI2015」国旗计划 解题报告

    「SCOI2015」国旗计划 蛮有趣的一个题 注意到区间互不交错,那么如果我们已经钦定了一个区间,它选择的下一个区间是唯一的,就是和它有交且右端点在最右边的,这个可以单调队列预处理一下 然后往后面跳拿 ...

  8. 「JLOI2015」骗我呢 解题报告?

    「JLOI2015」骗我呢 这什么神仙题 \[\color{purple}{Link}\] 可以学到的东西 对越过直线的东西翻折进行容斥 之类的..吧? Code: #include <cstd ...

  9. 「JLOI2015」城池攻占 解题报告

    「JLOI2015」城池攻占 注意到任意两个人的战斗力相对大小的不变的 可以离线的把所有人赛到初始点的堆里 然后做启发式合并就可以了 Code: #include <cstdio> #in ...

随机推荐

  1. Sharding模式

    将数据存储为一组水平的数据分区.这种模式可以在存储和访问大量的数据的时候提高可扩展性. 场景和问题 由单个服务器托管的数据存储可能受到下列限制: 存储空间限制.基于大规模云应用所使用的数据仓库,可能会 ...

  2. VitualBox安装linux记录

    下载镜像 CentOS 7镜像下载 阿里云站点:http://mirrors.aliyun.com/centos/7/isos/x86_64/ VirtualBox安装linux https://ww ...

  3. Quartz.Net分布式任务管理平台

           无关主题:一段时间没有更新文章了,与自己心里的坚持还是背驰,虽然这期间在公司做了统计分析,由于资源分配问题,自己或多或少的原因,确实拖得有点久了,自己这段时间也有点松懈,借口就不说那么多 ...

  4. c#基础系列2---深入理解 String

    "大菜":源于自己刚踏入猿途混沌时起,自我感觉不是一般的菜,因而得名"大菜",于自身共勉. 扩展阅读:深入理解值类型和引用类型 基本概念 string(严格来说 ...

  5. Hibernate_core_method

    /** * Created by Administrator on 2015/11/30. *HibernateUtil */public class HibernateUtil { private ...

  6. Java对象及对象引用变量

    Java对象及其引用 关于对象与引用之间的一些基本概念. 初学Java时,在很长一段时间里,总觉得基本概念很模糊.后来才知道,在许多Java书中,把对象和对象的引用混为一谈.可是,如果我分不清对象与对 ...

  7. TCP报文格式详解

    TCP报文是TCP层传输的数据单元,也叫报文段. 1.端口号:用来标识同一台计算机的不同的应用进程. 1)源端口:源端口和IP地址的作用是标识报文的返回地址. 2)目的端口:端口指明接收方计算机上的应 ...

  8. Git的其他用法

    目录: 减少[.git]文件夹的大小和文件数 更换git for windows的文本编辑器 修改已经提交的commit说明 合并commit 解决merge时出现的冲突 回退一个merge 获取某一 ...

  9. [转]Spring通过@Value注解注入属性的几种方式

    原文地址:https://blog.csdn.net/csujiangyu/article/details/50945486 ------------------------------------- ...

  10. Spring Framework: @RestController vs @Controller

    https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annota ...