在Python的新式类中,方法解析顺序并非是广度优先的算法,而是采用C3算法,只是在某些情况下,C3算法的结果恰巧符合广度优先算法的结果。

可以通过代码来验证下:

class NewStyleClassA(object):
var = 'New Style Class A' class NewStyleClassB(NewStyleClassA):
pass class NewStyleClassC(NewStyleClassA):
var = 'New Style Class C' class SubNewStyleClass(NewStyleClassB, NewStyleClassC):
pass if __name__ == '__main__':
print(SubNewStyleClass.mro())
print(SubNewStyleClass.var)

从第一段代码的运行结果来看,与广度优先的算法结果恰巧相同,但也只是恰巧相同,不等于就是广度优先的算法。

[<class '__main__.SubNewStyleClass'>, <class '__main__.NewStyleClassB'>, <class '__main__.NewStyleClassC'>, <class '__main__.NewStyleClassA'>, <type 'object'>]
New Style Class C

通过对代码进行修改可以证实:

将NewStyleClassC改为继承自object

class NewStyleClassA(object):
var = 'New Style Class A' class NewStyleClassB(NewStyleClassA):
pass class NewStyleClassC(object):
var = 'New Style Class C' class SubNewStyleClass(NewStyleClassB, NewStyleClassC):
pass if __name__ == '__main__':
print(SubNewStyleClass.mro())
print(SubNewStyleClass.var)

运行代码输出结果

[<class '__main__.SubNewStyleClass'>, <class '__main__.NewStyleClassB'>, <class '__main__.NewStyleClassA'>, <class '__main__.NewStyleClassC'>, <type 'object'>]
New Style Class A

从代码运行结果上看,并不符合广度优先的原则。

关于C3算法,在Python官方文档中是如此解释的:

take the head of the first list, i.e L[B1][0]; if this head is not in the tail of any of the other lists, then add it to the linearization of C and remove it from the lists in the merge, otherwise look at the head of the next list and take it, if it is a good head. Then repeat the operation until all the class are removed or it is impossible to find good heads. In this case, it is impossible to construct the merge, Python 2.3 will refuse to create the class C and will raise an exception.

C3算法的本质就是Merge,不断地把mro()函数返回的序列进行Merge,规则如下:

1. 如果第一个序列的第一个元素,是后续序列的第一个元素,或者不再后续序列中再次出现,则将这个元素合并到最终的方法解析顺序序列中,并从当前操作的全部序列中删除。

2. 如果不符合,则跳过此元素,查找下一个列表的第一个元素,重复1的判断规则

使用第一段代码逐步进行方法解析:

1.先打印NewStyleClassB和NewStyleClassC的mro(),得到他们的继承顺序序列

[<class '__main__.NewStyleClassB'>, <class '__main__.NewStyleClassA'>, <class 'object'>]
[<class '__main__.NewStyleClassC'>, <class 'object'>]

2.根据C3算法逐步对继承顺序进行解析:

mro(SubNewStyleClass)
= [SubNewStyleClass] + merge(mro(NewStyleClassB), mro(NewStyleClassC), [NewStyleClassB, NewStyleClassC])
# 根据第一步的打印结果,可以得出
= [SubNewStyleClass] + merge([NewStyleClassB, NewStyleClassA, object], [NewStyleClassC, NewStyleClassA, object], [NewStyleClassB, NewStyleClassC])
# 判断merge的当前序列第一个元素 NewStyleClassB, 在第三个序列中的第一个元素也存在,所以将其合并到最终序列并且删除:
= [SubNewStyleClass, NewStyleClassB] + merge([NewStyleClassA, object], [NewStyleClassC, NewStyleClassA, object], [NewStyleClassC])
# 判断merge的当前序列第一个元素 NewStyleClassA,在第二个序列中存在,并且不为第二个序列的第一个元素,则跳过
# 继续判断第二个序列中的第一个元素 NewStyleClassC,在第三个序列中存在,并且为第一个元素,所以将其合并到最终序列并且删除:
= [SubNewStyleClass, NewStyleClassB, NewStyleClassC] + merge([NewStyleClassA, object], [NewStyleClassA, object])
# 目前第一个序列的第一个元素是NewStyleClassA,所以再次对NewStyleClassA进行判断。
# NewStyleClassA在第二个序列中存在,并且为第二个序列的第一个元素,所以将其合并到最终序列并且删除:
= [SubNewStyleClass, NewStyleClassB, NewStyleClassC, NewStyleClassA] + merge([object], [object])
# 最终object,在第二个序列中出现,并且为第一个元素,所以将其合并到最终的序列并且删除,得到最终的继承顺序:
= [SubNewStyleClass, NewStyleClassB, NewStyleClassC, NewStyleClassA, object)

解析的结果和调用SubNewStyleClass.mro()方法打印出的结果是相同的:

[<class '__main__.SubNewStyleClass'>, <class '__main__.NewStyleClassB'>, <class '__main__.NewStyleClassC'>, <class '__main__.NewStyleClassA'>, <class 'object'>]

使用第二段代码逐步进行方法解析:

1. 先打印NewStyleClassB和NewStyleClassC的mro(),得到他们的继承顺序序列

[<class '__main__.NewStyleClassB'>, <class '__main__.NewStyleClassA'>, <class 'object'>]
[<class '__main__.NewStyleClassC'>, <class 'object'>]

2. 根据C3算法逐步对继承顺序进行解析:

mro(SubNewStyleClass)
  = [SubNewStyleClass] + merge(mro(NewStyleClassB), mro(NewStyleClassC), [NewStyleClassB, NewStyleClassC])
  # 根据第一步的打印结果,可以得出
  = [SubNewStyleClass] + merge([NewStyleClassB, NewStyleClassA, object], [NewStyleClassC, object], [NewStyleClassB, NewStyleClassC])
  # 判断merge的当前序列第一个元素 NewStyleClassB, 在第三个序列中的第一个元素也存在,所以将其合并到最终序列并且删除:
  = [SubNewStyleClass, NewStyleClassB] + merge([NewStyleClassA, object], [NewStyleClassC, object], [NewStyleClassC])
  # 判断merge的当前序列第一个元素 NewStyleClassA,在后续的序列中都不存在,所以将其合并到最终的序列并且删除:
  = [SubNewStyleClass, NewStyleClassB, NewStyleClassA] + merge([object], [NewStyleClassC, object], [NewStyleClassC])
  # 判断merge的当前序列第一个元素 object,在第二个序列中出现,并且不是第一个元素,则跳过
  # 跳过object后,继续判断下个序列的第一个元素,也就是第二个序列的第一个元素NewStyleClassC,在第三个序列中出现并且为第一个元素,所以将其合并到最终的序列并且删除:
  = [SubNewStyleClass, NewStyleClassB, NewStyleClassA, NewStyleClassC] + merge([object], [object])
  # 再次判断object,在第二个序列中出现,并且为第一个元素,所以将其合并到最终的序列并且删除,得到最终的继承顺序:
  = [SubNewStyleClass, NewStyleClassB, NewStyleClassA, NewStyleClassC, object)

和调用SubNewStyleClass.mro()方法打印出的结果是相同的

[<class '__main__.SubNewStyleClass'>, <class '__main__.NewStyleClassB'>, <class '__main__.NewStyleClassA'>, <class '__main__.NewStyleClassC'>, <class 'object'>]

类的继承和C3算法的更多相关文章

  1. Python新式类继承的C3算法

    在Python的新式类中,方法解析顺序并非是广度优先的算法,而是采用C3算法,只是在某些情况下,C3算法的结果恰巧符合广度优先算法的结果. 可以通过代码来验证下: class NewStyleClas ...

  2. Python多继承的C3算法

    C3算法 一.知识点补充: 拓扑排序:在图论中,拓扑排序(Topological Sorting) 是一个 有向无环图(DAG,Directed Acyclic Graph) 的所有顶点的线性序列.且 ...

  3. Python之从继承到C3算法

    在Python2.X和Python3.X有很多不同的地方,其中一个区别就是和继承有关. 在Python3.X中,一个类如果没有指明其继承哪个类的时候,其默认就是继承object类. 而在Python2 ...

  4. python3中的新式类mro查看和C3算法原理

    两个公式 L(object) = [object] L(子类(父类1, 父类2)) = [子类] + merge(L(父类1), L(父类2) , [父类1, 父类2])注意 + 代表合并列表 mer ...

  5. python新式类继承------C3算法

    一.引入 mro即method resolution order,主要用于在多继承时判断调的属性的路径(来自于哪个类).之前查看了很多资料,说mro是基于深度优先搜索算法的.但不完全正确在Python ...

  6. 关于Python类的多继承中的__mro__属性使用的C3算法以及继承顺序解释

    刚刚学到类的多继承这个环节,当子类继承多个父类时,调用的父类中的方法具体是哪一个我们无从得知,为此,在Python中有函数__mro__来表示方法解析顺序. 当前Python3.x的类多重继承算法用的 ...

  7. python摸爬滚打之day20--多继承,MRO和C3算法

    1.新式类和经典类 在python2.2之前, 基类如果不写(), 则表示为经典类; 在python2.2之后, 经典类不复存在, 只存在新式类. 如果基类谁都不继承的话, 则默认继承object. ...

  8. python中多继承C3算法研究

    在python的面向对象继承问题中,单继承简单易懂,全部接受传承类的属性,并可添加自带属性, 但是,在多继承情况下,会遇到多个被继承者的顺序问题,以及多次继承后查找前几次继承者需求属性时,可能不易发现 ...

  9. python学习 day20 (3月27日)----(单继承多继承c3算法)

    继承: 提高代码的重用性,减少了代码的冗余 这两个写法是一样的 Wa('青蛙').walk() #青蛙 can walk wa = Wa('青蛙') wa.walk() #青蛙 can walk 1. ...

随机推荐

  1. npm安装教程

    一.使用之前,我们先来掌握3个东西是用来干什么的. npm: Nodejs下的包管理器. webpack: 它主要的用途是通过CommonJS的语法把所有浏览器端需要发布的静态资源做相应的准备,比如资 ...

  2. [转]Redis内部数据结构详解-sds

    本文是<Redis内部数据结构详解>系列的第二篇,讲述Redis中使用最多的一个基础数据结构:sds. 不管在哪门编程语言当中,字符串都几乎是使用最多的数据结构.sds正是在Redis中被 ...

  3. csharp C#数字字符串排序orderby的问题解决

    一般情况下 您使用 strs.OrderBy(n=>n) 得出的结论是 1, 11,111,2,22,222想要得出 1,2,11,22,111,222 咋办?源码送上 static void ...

  4. 在WPF中的Canvas上实现控件的拖动、缩放

    如题,项目中需要实现使用鼠标拖动.缩放一个矩形框,WPF中没有现成的,那就自己造一个轮子:) 造轮子前先看看Windows自带的画图工具中是怎样做的,如下图: 在被拖动的矩形框四周有9个小框,可以从不 ...

  5. curl模拟访问已经存在的cookie

    curl 'http://i.meituan.com/brunch/order?status=2' -H 'Pragma: no-cache' -H 'Accept-Encoding: gzip, d ...

  6. 构建基于Suricata+Splunk的IDS入侵检测系统

    一.什么是IDS和IPS? IDS(Intrusion Detection Systems):入侵检测系统,是一种网络安全设备或应用软件,可以依照一定的安全策略,对网络.系统的运行状况进行监视,尽可能 ...

  7. python serial 模块使用

    python3 开始, python 加入了 serial 操作串口的模块 模块的引用 import serial 串口的申请 serial_com1 = serial.Serial("/d ...

  8. macos下golang 1.9配置

    1.golang最新版本下载地址 https://golang.org/dl/ (下载与安装过程此处省略一万字) 注意,go1.9与以往版本安装不同,直接安装到/usr/local/go目录下,而/u ...

  9. NaviSoft31.源码开发完成

    NaviSoft是作者一人开发完成,从之前的1.0版本,到现在的3.1版本.历经2年时间,开发完成 下面是NaviSoft的源码结构 加QQ群了解更多信息

  10. C#作为客户端调用gsoap生成的C++服务端

    近日在学习C++,偶然遇到网友想用C#调用gsoap生成的C++服务的问题,遂决定研究一下,网上搜索了很久,大多数是C++调用C#的应用.... 经过本人的不断努力,终于找到一种解决问题的方法,总结如 ...