The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.

Input Specification:

Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1<P≤7). The numbers in a line are separated by a space.

Output Specification:

For each case, if the solution exists, output in the format:

N = n[1]^P + ... n[K]^P

where n[i] (i = 1, ..., K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 12​2​​+4​2​​+2​2​​+2​2​​+1​2​​, or 11​2​​+6​2​​+2​2​​+2​2​​+2​2​​, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a​1​​,a​2​​,⋯,a​K​​ } is said to be larger than { b​1​​,b​2​​,⋯,b​K​​ } if there exists 1≤L≤K such that a​i​​=b​i​​ for i<L and a​L​​>b​L​​.

If there is no solution, simple output Impossible.

Sample Input 1:

169 5 2

Sample Output 1:

169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2

Sample Input 2:

169 167 3

Sample Output 2:

Impossible

 #include <stdio.h>
#include <algorithm>
#include <set>
#include <string.h>
#include <vector>
#include <math.h>
#include <queue>
using namespace std;
bool cmp(int a,int b){
return a>b;
}
const int maxn = ;
int n,p,k,maxk=-;
int vis[maxn]={};
vector<int> res,tmp;
void dfs(int index,int ksum,int cntk,int nsum){
//if(index<1 || nsum>n || cntk>k) return;
if(nsum==n && cntk == k){
if(ksum>maxk){
res=tmp;
maxk=ksum;
}
return;
}
tmp.push_back(index);
if(nsum+vis[index]<=n && cntk+<=k)dfs(index,ksum+index,cntk+,nsum+vis[index]);
tmp.pop_back();
if(index->)dfs(index-,ksum,cntk,nsum);
}
int main(){
scanf("%d %d %d",&n,&k,&p);
int i;
for(i=;i<=n;i++){
int res = pow(i,p);
if(res>n)break;
vis[i]=res;
}
i--;
dfs(i,,,);
if(maxk==-)printf("Impossible");
else{
printf("%d = ",n);
sort(res.begin(),res.end(),cmp);
for(int j=;j<res.size();j++){
printf("%d^%d",res[j],p);
if(j<res.size()-)printf(" + ");
}
}
}

注意点:看到题目想到了要从大到小一个个遍历然后去比较条件,想用while和for写出来,发现真的写不来,有好多情况,看了大佬的思路,原来这就是递归,很明显的有个递归边界,递归式也很方便,果然对递归的理解还是不够深,知道思路,却没想到用递归这个武器。

PAT A1103 Integer Factorization (30 分)——dfs,递归的更多相关文章

  1. PAT甲题题解-1103. Integer Factorization (30)-(dfs)

    该题还不错~. 题意:给定N.K.P,使得可以分解成N = n1^P + … nk^P的形式,如果可以,输出sum(ni)最大的划分,如果sum一样,输出序列较大的那个.否则输出Impossible. ...

  2. 【PAT甲级】1103 Integer Factorization (30 分)

    题意: 输入三个正整数N,K,P(N<=400,K<=N,2<=P<=7),降序输出由K个正整数的P次方和为N的等式,否则输出"Impossible". / ...

  3. PAT A1103 Integer Factorization

    线性dfs,注意每次深搜完状态的维护~ #include<bits/stdc++.h> using namespace std; ; vector<int> v,tmp,pat ...

  4. 1103 Integer Factorization (30)

    1103 Integer Factorization (30 分)   The K−P factorization of a positive integer N is to write N as t ...

  5. PAT 1103 Integer Factorization[难]

    1103 Integer Factorization(30 分) The K−P factorization of a positive integer N is to write N as the ...

  6. PAT 甲级 1147 Heaps (30 分) (层序遍历,如何建树,后序输出,还有更简单的方法~)

    1147 Heaps (30 分)   In computer science, a heap is a specialized tree-based data structure that sati ...

  7. [PAT] 1147 Heaps(30 分)

    1147 Heaps(30 分) In computer science, a heap is a specialized tree-based data structure that satisfi ...

  8. PAT 甲级1057 Stack (30 分)(不会,树状数组+二分)*****

    1057 Stack (30 分)   Stack is one of the most fundamental data structures, which is based on the prin ...

  9. PAT 1004 Counting Leaves (30分)

    1004 Counting Leaves (30分) A family hierarchy is usually presented by a pedigree tree. Your job is t ...

随机推荐

  1. minitab 输入一串数字

    有时候,我们要向minitab的worksheet输入一串串的数字,很是麻烦. 相如一串数字我们在一个pdf文件存着 那么效率最低的输入方法就是一个一个的输入,"Enter"进入下 ...

  2. 牛客网剑指offer 二维数组的查找

    题目描述 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 解题思路 该题有很多种 ...

  3. 【读书笔记】iOS-深入解剖对等网络

    协议本身是一个运行在UDP之上的定制协议.我所以决定使用一个定制协议很简单.首先,当前这个任务看起来足够简单,因此与尝试改进一个现在协议相比,直接构建一个定制协议更为容易.其次,定制协议可以将开销减少 ...

  4. Tomcat 部署外部系统

    /usr/local/tomcat/conf/Catalina/localhost/resource.xml <?xml version='1.0' encoding='utf-8' ?> ...

  5. Salesforce的报表和仪表板

    报表是现代企业中最常用到的功能之一.Salesforce中提供了强大的报表和仪表板功能. 报表和仪表板简介 报表是一组数据展示,用户可以自定义规则,只有符合相应规则的数据才会显示出来. Salesfo ...

  6. Ansible--inventory

    简介 Inventory 是 Ansible 管理主机信息的配置文件,相当于系统 HOSTS 文件的功能,默认存放在 /etc/ansible/hosts.为方便批量管理主机,便捷使用其中的主机分组, ...

  7. 安卓开发-设置RadioButton的点击效果

    在安卓开发中用到底部菜单栏 需要用到RadioButton这个组件 实际应用的过程中,需要对按钮进行点击,为了让用户知道是否点击可这个按钮,可以设置点击后 ,该按钮的颜色或者背景发生变化. layou ...

  8. 安卓开发之Room实体定义数据

    使用Room实体定义数据 在Room库中,entities(实体)代表着相关字段集.每一个entity(实体)代表着相关联数据库中的一个表.entity 类必须通过Database 类中的entiti ...

  9. Fiddler抓包使用教程-过滤

    转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/72929800 本文出自[赵彦军的博客] Fiddler抓包可以完成我们移动开发者的 ...

  10. 理解ES6中的Promise

    一.Promise的作用 在ajax请求数据的过程中,我们可以异步拿到我们想要的数据,然后在回调中做相应的数据处理. 这样做看上去并没有什么麻烦,但是如果这个时候,我们还需要做另外一个ajax请求,这 ...