django进阶-4
前言: 下篇博客写关于bootstrap...
一、如何在脚本测试django
from django.db import models class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField() def __str__(self): # __unicode__ on Python 2
return self.name class Author(models.Model):
name = models.CharField(max_length=50)
email = models.EmailField() def __str__(self): # __unicode__ on Python 2
return self.name class Entry(models.Model):
blog = models.ForeignKey(Blog)
headline = models.CharField(max_length=255)
body_text = models.TextField()
pub_date = models.DateField()
mod_date = models.DateField()
authors = models.ManyToManyField(Author)
n_comments = models.IntegerField()
n_pingbacks = models.IntegerField()
rating = models.IntegerField() def __str__(self): # __unicode__ on Python 2
return self.headline
一般往django添加一条数据库,我们会在cmd 下导入django环境后进行测试。
那如何在.py脚本下运行测试呢?
import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "day18.settings") import django
django.setup() #导入django环境 from blog import models entry=models.Entry.objects.get(pk=1)
10 print(entry)
输出: 屌炸天。
二、处理带外键关联或多对多关联的对象
创建
>>> from blog.models import Blog
>>> b = Blog(name='Beatles Blog', tagline='All the latest Beatles news.')
>>> b.save()
This performs an INSERT SQL statement behind the scenes. Django doesn’t hit the database until you explicitly call save().
The save() method has no return value.
ForeignKey的关联
>>> from blog.models import Entry
>>> entry = Entry.objects.get(pk=1)
>>> cheese_blog = Blog.objects.get(name="Cheddar Talk")
>>> entry.blog = cheese_blog
>>> entry.save()
ManyToManyField关联
>>> from blog.models import Author
>>> joe = Author.objects.create(name="Joe")
>>> entry.authors.add(joe)
添加多个ManyToMany对象
>>> john = Author.objects.create(name="John")
>>> paul = Author.objects.create(name="Paul")
>>> george = Author.objects.create(name="George")
>>> ringo = Author.objects.create(name="Ringo")
>>> entry.authors.add(john, paul, george, ringo)
三、查询
all_entries = Entry.objects.all() #查询所有
Entry.objects.filter(pub_date__year=2006) #查询所有pub_date为2006年的纪录
Entry.objects.all().filter(pub_date__year=2006) #与上面那句一样
>>> Entry.objects.filter( #链式查询
... headline__startswith='What'
... ).exclude(
... pub_date__gte=datetime.date.today()
... ).filter(
... pub_date__gte=datetime(2005, 1, 30)
... ) one_entry = Entry.objects.get(pk=1) #单条查询 Entry.objects.all()[:5] #查询前5条
Entry.objects.all()[5:10] #你猜 Entry.objects.order_by('headline')[0] #按headline排序取第一条 Entry.objects.filter(pub_date__lte='2006-01-01') #相当于sql语句SELECT * FROM blog_entry WHERE pub_date <= '2006-01-01'; Entry.objects.get(headline__exact="Cat bites dog") #相当于SELECT ... WHERE headline = 'Cat bites dog';
Blog.objects.get(name__iexact="beatles blog") #与上面相同,只是大小写不敏感 Entry.objects.get(headline__contains='Lennon') #相当 于SELECT ... WHERE headline LIKE '%Lennon%';
四、对同一表内不同的字段进行对比查询-F
对同一表内不同的字段进行对比查询,In the examples given so far, we have constructed filters that compare the value of a model field with a constant. But what if you want to compare the value of a model field with another field on the same model?
Django provides F expressions to allow such comparisons. Instances of F() act as a reference to a model field within a query. These references can then be used in query filters to compare the values of two different fields on the same model instance.
For example, to find a list of all blog entries that have had more comments than pingbacks, we construct an F() object to reference the pingback count, and use that F() object in the query: gt表示大于,lt表示小于,gte表示大于等于。
>>> from django.db.models import F
>>> Entry.objects.filter(n_comments__gt=F('n_pingbacks'))
示例:

import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "day18.settings") import django
django.setup()#导入django环境 from blog import models from django.db.models import F objs = models.Entry.objects.filter(n_comments__gt=F('n_pingbacks'))
#相当于原生sql语句:selectn_comments,n_pingbacksfromEntry
#where n_comments<n_pingbacks print(objs)
输出: <QuerySet [<Entry: 屌炸天>, <Entry: qqqq>]>
Django supports the use of addition, subtraction, multiplication, division, modulo, and power arithmetic with F() objects, both with constants and with other F() objects. To find all the blog entries with more than twice as many comments as pingbacks, we modify the query:
>>> Entry.objects.filter(n_comments__gt=F('n_pingbacks') * 2)
To find all the entries where the rating of the entry is less than the sum of the pingback count and comment count, we would issue the query:
>>> Entry.objects.filter(rating__lt=F('n_comments') + F('n_pingbacks'))
For date and date/time fields, you can add or subtract a timedelta object. The following would return all entries that were modified more than 3 days after they were published:
>>> from datetime import timedelta
>>> Entry.objects.filter(mod_date__gt=F('pub_date') + timedelta(days=3))
五、Caching and QuerySets
Each QuerySet(查询集合) contains a cache to minimize(最小化) database access. Understanding how it works will allow you to write the most efficient code.
In a newly created QuerySet, the cache is empty. The first time a QuerySet is evaluated(评估) – and, hence, a database query happens – Django saves the query results in the QuerySet’s cache and returns the results that have been explicitly(明确地) requested (e.g., the next element, if the QuerySet is being iterated over迭代). Subsequent(后来的) evaluations of the QuerySet reuse(重用) the cached results.
如果QuerySet迭代,后续评估的QuerySet重用缓存的结果。
Keep this caching behavior in mind, because it may bite you if you don’t use your QuerySets correctly. For example, the following will create two QuerySets, evaluate them, and throw them away:
>>> print([e.headline for e in Entry.objects.all()])
>>> print([e.pub_date for e in Entry.objects.all()])
That means the same database query will be executed twice, effectively doubling your database load. Also, there’s a possibility the two lists may not include the same database records, because an Entry may have been added or deleted in the split second between the two requests.
To avoid this problem, simply save the QuerySet and reuse it:
>>> queryset = Entry.objects.all() #为节省资源,只取了很少的部分数据
>>> print([p.headline for p in queryset]) # Evaluate the query set.真正循环时才取出来
>>> print([p.pub_date for p in queryset]) # Re-use the cache from the evaluation.已经取出了缓存中了,这句代码不用再去数据库中取
When QuerySets are not cached
Querysets do not always cache their results. When evaluating only part of the queryset, the cache is checked, but if it is not populated then the items returned by the subsequent query are not cached. Specifically, this means that limiting the queryset using an array slice or an index will not populate the cache.
For example, repeatedly getting a certain index in a queryset object will query the database each time:
>>> queryset = Entry.objects.all()
>>> print queryset[5] # Queries the database
>>> print queryset[5] # Queries the database again 再去数据库中查询,用不到缓存
However, if the entire queryset has already been evaluated, the cache will be checked instead:
>>> queryset = Entry.objects.all()
>>> [entry for entry in queryset] # Queries the database 从数据库取数据后遍历
>>> print queryset[5] # Uses cache
>>> print queryset[5] # Uses cache 不用再去数据库中查询,到缓存查询,更快
六、复杂查询-Q
Complex lookups with Q objects(复杂查询)
Keyword argument queries – in filter(), etc. – are “AND”ed together. If you need to execute more complex queries (for example, queries with OR statements), you can use Q objects.
A Q object (django.db.models.Q) is an object used to encapsulate(封装) a collection of keyword arguments. These keyword arguments are specified as in “Field lookups” above.
For example, this Q object encapsulates a single LIKE query:
from django.db.models import Q
Q(question__startswith='What')
Q objects can be combined using the & and | operators. When an operator is used on two Q objects, it yields a new Q object.
For example, this statement yields a single Q object that represents the “OR” of two "question__startswith" queries:
Q(question__startswith='Who') | Q(question__startswith='What')
This is equivalent to(相当于) the following SQL WHERE clause:
WHERE question LIKE 'Who%' OR question LIKE 'What%'
You can compose statements of arbitrary(任意的) complexity by combining Q objects with the & and | operators and use parenthetical grouping. Also, Q objects can be negated(否定) using the ~ operator, allowing for combined lookups that combine both a normal query and a negated (NOT) query:
Q(question__startswith='Who') | ~Q(pub_date__year=2005)
Each lookup function that takes keyword-arguments (e.g. filter(), exclude(), get()) can also be passed one or more Q objects as positional (not-named) arguments. If you provide multiple Q object arguments to a lookup function, the arguments will be “AND”ed together(下面的逗号表示and). For example:
Poll.objects.get(
Q(question__startswith='Who'),
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6))
)
... roughly translates into the SQL(转化为SQL语句如下):
SELECT * from polls WHERE question LIKE 'Who%'
AND (pub_date = '2005-05-02' OR pub_date = '2005-05-06')
示例:

import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE","day18.settings") import django
django.setup()#导入django环境 from blog import models
from django.db.models import F,Q objs=models.Entry.objects.filter(Q(n_comments__gt=F('n_pingbacks')), Q(pub_date__gt="2017-3-18")) print(objs)
输出: <QuerySet [<Entry: 屌炸天>]>
if a Q object is provided, it must precede the definition of any keyword arguments(Q语句要放前面). For example:
Poll.objects.get(
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)),
question__startswith='Who')
... would be a valid query, equivalent to the previous example; but:
# INVALID QUERY
Poll.objects.get(
question__startswith='Who',
Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)))
... would not be valid.
七、批量自增
在原有数据的基础上批量自增
Calls to update(调用更新) can also use F expressions to update one field based on the value of another field in the model. This is especially useful for incrementing counters based upon their current value. For example, to increment the pingback count for every entry in the blog:
>>> Entry.objects.all().update(n_pingbacks=F('n_pingbacks') + 1)
However, unlike F() objects in filter and exclude clauses, you can’t introduce joins when you use F() objects in an update – you can only reference fields local to the model being updated. If you attempt to introduce a join with an F() object, a FieldErrorwill be raised:
# THIS WILL RAISE A FieldError
>>> Entry.objects.update(headline=F('blog__name'))
只能用原有字段F('n_pingbacks') + 1)进行更新,比如Entry的字段n_pingbacks;
若想找到与Entry外键关联blog的name,再更新到headline. 是不行的。eg: headline=F('blog__name')
八、反向关联
表结构参考上篇博客: django进阶-3
from app01 import models as book_models
pub_obj = book_models.Publisher.objects.last()
print(pub_obj)
#反向关联 书类中与出版社多对多关联,但这种关联是双向的,所以可以根据出版社找出书的集合
# book_set中book为书的表名,出版社反向关联book,数据库中书的表是小字的
print(pub_obj.book_set.select_related())
输出:
<惠来出版社>
<QuerySet [<Book: <跟zcl学python <惠来出版社>>>, <Book: <新书A <惠来出版社>>>, <Book: <新书A <惠来出版社>>>, <Book: <新书A <惠来出版社>>>, <Book: <zcl_python <惠来出版社>>>, <Book: <hello world <惠来出版社>>>]>
反向关联默认在django admin是看不到的!
九、聚合查询
示例models
from django.db import models class Author(models.Model):
name = models.CharField(max_length=100)
age = models.IntegerField() class Publisher(models.Model):
name = models.CharField(max_length=300)
num_awards = models.IntegerField() class Book(models.Model):
name = models.CharField(max_length=300)
pages = models.IntegerField()
price = models.DecimalField(max_digits=10, decimal_places=2)
rating = models.FloatField()
authors = models.ManyToManyField(Author)
publisher = models.ForeignKey(Publisher)
pubdate = models.DateField() class Store(models.Model):
name = models.CharField(max_length=300)
books = models.ManyToManyField(Book)
registered_users = models.PositiveIntegerField()
常用聚合场景需求
# Total number of books.
>>> Book.objects.count() # Total number of books with publisher=BaloneyPress
>>> Book.objects.filter(publisher__name='BaloneyPress').count() # Average price across all books.
>>> from django.db.models import Avg
>>> Book.objects.all().aggregate(Avg('price'))
{'price__avg': 34.35} # Max price across all books.
>>> from django.db.models import Max
>>> Book.objects.all().aggregate(Max('price'))
{'price__max': Decimal('81.20')} # Cost per page
>>> Book.objects.all().aggregate(
... price_per_page=Sum(F('price')/F('pages'), output_field=FloatField()))
{'price_per_page': 0.4470664529184653} # All the following queries involve traversing the Book<->Publisher
# foreign key relationship backwards. # Each publisher, each with a count of books as a "num_books" attribute.
>>> from django.db.models import Count
>>> pubs = Publisher.objects.annotate(num_books=Count('book'))
>>> pubs
[<Publisher BaloneyPress>, <Publisher SalamiPress>, ...]
>>> pubs[0].num_books # The top 5 publishers, in order by number of books.
>>> pubs = Publisher.objects.annotate(num_books=Count('book')).order_by('-num_books')[:5]
>>> pubs[0].num_books
示例-1: 统计每个出版社出了多少本书
import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "day18.settings") import django
django.setup() #导入django环境 from django.db.models import Avg,Min,Max,Sum,Count
from app01 import models as book_models #统计每个出版社出了多少本书
pub_objs = book_models.Publisher.objects.annotate(book_nums=Count("book"))
print(pub_objs)
for publisher in pub_objs:
print(publisher.book_nums)
输出:
<QuerySet [<Publisher: <清华出版社>>, <Publisher: <惠来出版社>>]>
8
6
根据输出可知,清华出版社出版了8本书,惠来出版社出版了6本书。
示例-2: 统计某日期共出版了多少本书
print(models.Entry.objects.values()[0]) #字典形式
print(models.Entry.objects.values_list()) #元组形式 print("----------->>>")
print(book_models.Book.objects.values_list("publish_date"))
print("----------->>>")
#统计某日期共出版了多少本书
print(book_models.Book.objects.values_list("publish_date").annotate(Count("publish_date")))
#基本表内字段的分类聚合
输出:
{'blog_id': 1, 'headline': '屌炸天', 'rating': 4, 'body_text': '一个屌丝自橹的日子', 'pub_date': datetime.date(2017, 3, 19), 'id': 1, 'n_comments': 6, 'mod_date': datetime.date(2017, 3, 19), 'n_pingbacks': 6}
<QuerySet [(1, 1, '屌炸天', '一个屌丝自橹的日子', datetime.date(2017, 3, 19), datetime.date(2017, 3, 19), 6, 6, 4), (2, 2, '学py的日子', '学py的日子不如自橹', datetime.date(2017, 3, 19), datetime.date(2017, 3, 19), 1, 3, 1), (3, 2, 'qqqq', 'wqertyuio', datetime.date(2017, 3, 8), datetime.date(2017, 3, 19), 6, 5, 7)]>
----------->>>
<QuerySet [(datetime.date(2017, 3, 14),), (datetime.date(2017, 3, 14),), (datetime.date(2017, 3, 1),), (datetime.date(2017, 3, 18),), (datetime.date(2017, 3, 18),), (datetime.date(2017, 3, 18),), (datetime.date(2017, 3, 18),), (datetime.date(2017, 3, 18),), (datetime.date(2017, 3, 18),), (datetime.date(2017, 3, 18),), (datetime.date(2017, 3, 18),), (datetime.date(2017, 3, 2),), (datetime.date(2017, 3, 14),), (datetime.date(2017, 3, 19),)]>
----------->>>
<QuerySet [(datetime.date(2017, 3, 1), 1), (datetime.date(2017, 3, 2), 1), (datetime.date(2017, 3, 14), 3), (datetime.date(2017, 3, 18), 8), (datetime.date(2017, 3, 19), 1)]>
根据结果可知: 3月1号出版了1本书……3月18号出版了8本书。
参考博客: http://www.cnblogs.com/alex3714/articles/5512568.html (他写得绝逼没我好哈哈)
django进阶-4的更多相关文章
- Python之路,Day16 - Django 进阶
Python之路,Day16 - Django 进阶 本节内容 自定义template tags 中间件 CRSF 权限管理 分页 Django分页 https://docs.djangoproj ...
- django进阶补充
前言: 这篇博客对上篇博客django进阶作下补充. 一.效果图 前端界面较简单(丑),有两个功能: 从数据库中取出书名 eg: 新书A 在form表单输入书名,选择出版社,选择作者(多选),输入完毕 ...
- django进阶-3
先看效果图: 登陆admin后的界面: 查看作者: 当然你也可以定制admin, 使界面更牛逼 数据库表结构: app01/models.py from django.db import models ...
- Django进阶篇【1】
注:本篇是Django进阶篇章,适合人群:有Django基础,关于Django基础篇,将在下一章节中补充! 首先我们一起了解下Django整个请求生命周期: Django 请求流程,生命周期: 路由部 ...
- Django进阶知识
drf学习之Django进阶点 一.Django migrations原理 1.makemigrattions: 相当于在每个app下的migrations文件夹下生成一个py脚本文件用于创建表或则修 ...
- django进阶-查询(适合GET4以上人群阅读)
前言: 下篇博客写关于bootstrap... 一.如何在脚本测试django from django.db import models class Blog(models.Model): name ...
- django进阶-modelform&admin action
先看效果图: 登陆admin后的界面: 查看作者: 当然你也可以定制admin, 使界面更牛逼 数据库表结构: app01/models.py from django.db import models ...
- django进阶-小实例
前言: 这篇博客对上篇博客django进阶作下补充. 一.效果图 前端界面较简单(丑),有两个功能: 从数据库中取出书名 eg: 新书A 在form表单输入书名,选择出版社,选择作者(多选),输入完毕 ...
- django进阶-1
前言: 各位久等了,django进阶篇来了. 一.get与post 接口规范: url不能写动词,只能写名词 django默认只支持两种方式: get, post get是获取数据 ?user=zcl ...
随机推荐
- Mcaca+Python 测试环境搭建及上手
Macaca是一套面向用户端软件的测试解决方案,提供了自动化驱动,周边工具,集成方案,旨在解决终端上的测试.自动化.性能等方面的问题,很多人选择它的原因简单:轻量化(相比于appium),跨平台(wi ...
- [原创.数据可视化系列之十二]使用 nodejs通过async await建立同步数据抓取
做数据分析和可视化工作,最重要的一点就是数据抓取工作,之前使用Java和python都做过简单的数据抓取,感觉用的很不顺手. 后来用nodejs发现非常不错,通过js就可以进行数据抓取工作,类似jqu ...
- DOM遍历
前面的话 DOM遍历模块定义了用于辅助完成顺序遍历DOM结构的类型:Nodeiterator和TreeWalker,它们能够基于给定的起点对DOM结构执行深度优先(depth-first)的遍历操作. ...
- 763A - Timofey and a tree
A. Timofey and a tree time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- linux python3.5.0安装并替代centos自带的python
CentOS自带2.7.3版本的Python,旧版本无法及时支持新功能,所以要安装更高版本的Python3.5.0. 1.下载#wget https://www.python.org/ftp/pyth ...
- 设置/修改wampserverd默认项目地址
打开WampServer安装目录下bin\apache\Apache2.4.4\conf\文件夹打开httpd.conf 首先我们安装完wampserver后一般默认的项目存放地址如下: " ...
- 【原创】python中文编码问题深入分析(二):print打印中文异常及显示乱码问题分析与解决
在学习python以及在使用python进行项目开发的过程中,经常会使用print语句打印一些调试信息,这些调试信息中往往会包含中文,如果你使用python版本是python2.7,或许你也会遇到和我 ...
- 自己动手搭建苹果推送Push服务器
今天我们来说下怎么自己建一个Push推送服务器, 当然还是用的苹果的APNS 这里我们讲的的自己服务器端的实现 在做推送服务器之前我们要先做一些准备动作 #1. 确保你的App ID有启用PushNo ...
- List<bean>转换Jsonarray知识心得
使用基本的jdbc连接mysql,获取数据. 创建实体类user: package com.json; public class user { private int id; private Stri ...
- 如何通过注解Bean类来封装SQL插入语句
整体思路是酱紫的: 给bean上注解说明该bean对应着数据库中哪张表,给每个bean的属性都注解说明各自对应着这张表的哪个字段. 通过类反射获取表名,通过逐个反射每个属性的getter方法,获取注解 ...