[LintCode] Coins in a Line II 一条线上的硬币之二
There are n coins with different value in a line. Two players take turns to take one or two coins from left side until there are no more coins left. The player who take the coins with the most value wins.
Could you please decide the first player will win or lose?
Given values array A = [1,2,2], return true.
Given A = [1,2,4], return false.
这道题是之前那道Coins in a Line的延伸,由于每个硬币的面值不同,所以那道题的数学解法就不行了,这里我们需要使用一种方法叫做极小化极大算法Minimax,这是博弈论中比较经典的一种思想,LeetCode上有一道需要用这种思路解的题Guess Number Higher or Lower II。这道题如果没有接触过相类似的题,感觉还是蛮有难度的。我们需要用DP来解,我们定义一个一维数组dp,其中dp[i]表示从i到end可取的最大钱数,大小比values数组多出一位,若n为values的长度,那么dp[n]先初始化为0。我们是从后往前推,我们想如果是values数组的最后一位,及i = n-1时,此时dp[n-1]应该初始化为values[n-1],因为拿了肯定比不拿大,钱又没有负面额;那么继续往前推,当i=n-2时,dp[n-2]应该初始化为values[n-2]+values[n-1],应为最多可以拿两个,所以最大值肯定是两个都拿;当i=n-3时,dp[n-3]应该初始化为values[n-3]+values[n-2],因为此时还剩三个硬币,你若只拿一个,那么就会给对手留两个,当然不行,所以自己要拿两个,只能给对手留一个,那么到目前位置初始化的步骤就完成了,下面就需要找递推式了:
当我们处在i处时,我们有两种选择,拿一个还是拿两个硬币,我们现在分情况讨论:
1. 当我们只拿一个硬币values[i]时,那么对手有两种选择,拿一个硬币values[i+1],或者拿两个硬币values[i+1] + values[i+2]
a) 当对手只拿一个硬币values[i+1]时,我们只能从i+2到end之间来取硬币,所以我们能拿到的最大硬币数为dp[i+2]
b) 当对手拿两个硬币values[i+1] + values[i+2]时,我们只能从i+3到end之间来取硬币,所以我们能拿到的最大硬币数为dp[i+3]
由于对手的目的是让我们拿较小的硬币,所以我们只能拿dp[i+2]和dp[i+3]中较小的一个,所以对于我们只拿一个硬币的情况,我们能拿到的最大钱数为values[i] + min(dp[i+2], dp[i+3])
2. 当我们拿两个硬币values[i] + values[i + 1]时,那么对手有两种选择,拿一个硬币values[i+2],或者拿两个硬币values[i+2] + values[i+3]
a) 当对手只拿一个硬币values[i+2]时,我们只能从i+3到end之间来取硬币,所以我们能拿到的最大硬币数为dp[i+3]
b) 当对手拿两个硬币values[i+2] + values[i+3]时,我们只能从i+4到end之间来取硬币,所以我们能拿到的最大硬币数为dp[i+4]
由于对手的目的是让我们拿较小的硬币,所以我们只能拿dp[i+3]和dp[i+4]中较小的一个,所以对于我们只拿一个硬币的情况,我们能拿到的最大钱数为values[i] + values[i + 1] + min(dp[i+3], dp[i+4])
综上所述,递推式就有了 dp[i] = max(values[i] + min(dp[i+2], dp[i+3]), values[i] + values[i + 1] + min(dp[i+3], dp[i+4]))
这样当我们算出了dp[0],知道了第一个玩家能取出的最大钱数,我们只需要算出总钱数,然后就能计算出另一个玩家能取出的钱数,二者比较就知道第一个玩家能否赢了,参见代码如下:
class Solution {
public:
/**
* @param values: a vector of integers
* @return: a boolean which equals to true if the first player will win
*/
bool firstWillWin(vector<int> &values) {
if (values.size() <= ) return true;
int n = values.size(), sum = ;
vector<int> dp(n + , );
dp[n - ] = values[n - ];
dp[n - ] = values[n - ] + values[n - ];
dp[n - ] = values[n - ] + values[n - ];
for (int i = n - ; i >= ; --i) {
dp[i] = max(values[i] + min(dp[i + ], dp[i + ]), values[i] + values[i + ] + min(dp[i + ], dp[i + ]));
}
for (int d : values) {
sum += d;
}
return sum - dp[] < dp[];
}
};
类似题目:
Guess Number Higher or Lower II
参考资料:
http://www.cnblogs.com/theskulls/p/4963317.html
[LintCode] Coins in a Line II 一条线上的硬币之二的更多相关文章
- [LintCode] Coins in a Line 一条线上的硬币
There are n coins in a line. Two players take turns to take one or two coins from right side until t ...
- LintCode "Coins in a Line II" !
Nice one to learn: DP + Game Theoryhttps://lefttree.gitbooks.io/leetcode/content/dynamicProgramming2 ...
- LintCode: coins in a line I
有 n 个硬币排成一条线.两个参赛者轮流从右边依次拿走 1 或 2 个硬币,直到没有硬币为止.拿到最后一枚硬币的人获胜. 请判定 第一个玩家 是输还是赢? n = 1, 返回 true.n = 2, ...
- lintcode 394. Coins in a Line 、leetcode 292. Nim Game 、lintcode 395. Coins in a Line II
变型:如果是最后拿走所有石子那个人输,则f[0] = true 394. Coins in a Line dp[n]表示n个石子,先手的人,是必胜还是必输.拿1个石子,2个石子之后都是必胜,则当前必败 ...
- LeetCode:149_Max Points on a line | 寻找一条直线上最多点的数量 | Hard
题目:Max Points on a line Given n points on a 2D plane, find the maximum number of points that lie on ...
- Lintcode395 Coins in a Line II solution 题解
[题目描述] There are n coins with different value in a line. Two players take turns to take one or two c ...
- Coins in a Line II
There are n coins with different value in a line. Two players take turns to take one or two coins fr ...
- 395. Coins in a Line II
最后更新 这个题做得也不好,dp[n]尝试写了几下,不太对. 应该是类似于gem theory的题. 当只有1个硬币剩下的时候直接拿走,不BB. 剩俩的时候也都拿了.. dp[n]表示剩下多少个硬币. ...
- LintCode "Coins in a Line III" !!
https://codesolutiony.wordpress.com/2015/05/24/lintcode-coins-in-a-line-iii/ A very juicy one! Deser ...
随机推荐
- HR外包系统 - 薪资项目分类
序号 薪资项目编码规则 6到9开头1 普通工资项目加项 7开头三位,7XX,不够时,从71XX开始2 普通工资项目减项 8开头三位,8XX,不够时,从81XX开始3 ...
- 搭建Mantis 缺陷管理系统(转)
转自 什么是Mantis MantisBT is a free popular web-based bugtracking system (feature list). It is written i ...
- jQuery.fn.extend与jQuery.extend到底区别在哪?
正文: 其实说白了,从两个方法本身就能看出来端倪. 我们先把jQuery看成了一个类,这样好理解一些. jQuery.extend(),是扩展的jQuery这个类. 假设我们把jQuery这个类看成是 ...
- 在Salesforce中对某一个Object添加自定义的Button和Link
在Salesforce中可以对某一个Object添加自定义的Button和Link,来完成特定的逻辑过程,接下来以一个简单的实例来描述整个处理流程,实现的基本功能和我另外一篇文章中描述的功能是一致的( ...
- RxJava 的使用入门
一.什么是 RxJava? RxJava 是一个响应式编程框架,采用观察者设计模式.所以自然少不了 Observable 和 Subscriber 这两个东东了. RxJava 是一个开源项目,地址: ...
- BZOJ 2342 回文串-Manacher
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2342 思路:先跑一遍Manacher求出p[i]为每个位置为中心的回文半径,因为双倍回文串 ...
- JS操作select下拉框动态变动(创建/删除/获取)
1.动态创建select function createSelect(){ var mySelect = document.createElement_x("select"); m ...
- 1140 分珠 dfs
时间限制:500MS 内存限制:65536K提交次数:24 通过次数:18 题型: 编程题 语言: G++;GCC Description 如下图所示,有若干珠子,每颗珠子重量不同,珠子之间有一 ...
- HBase 学习笔记
1. HBase 的特点 1.线性扩展,自动分表 region的自动分裂以及master的balance 增加datanode机器即可增加容量 增加regionserver机器即可增加读写吞吐量 2. ...
- iOS 查找文件、遍历文件系统
NSFileManager *manager = [NSFileManager defaultManager]; NSString *home = [@"~" stringByEx ...