2007: [Noi2010]海拔

Time Limit: 20 Sec  Memory Limit: 552 MB
Submit: 2095  Solved: 1002
[Submit][Status][Discuss]

Description

YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域。简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形。从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路(简称道路),每条双向道路连接主干道上两个相邻的交叉路口。下图为一张YT市的地图(n = 2),城市被划分为2×2个区域,包括3×3个交叉路口和12条双向道路。 小Z作为该市的市长,他根据统计信息得到了每天上班高峰期间YT市每条道路两个方向的人流量,即在高峰期间沿着该方向通过这条道路的人数。每一个交叉路口都有不同的海拔高度值,YT市市民认为爬坡是一件非常累的事情,每向上爬h的高度,就需要消耗h的体力。如果是下坡的话,则不需要耗费体力。因此如果一段道路的终点海拔减去起点海拔的值为h(注意h可能是负数),那么一个人经过这段路所消耗的体力是max{0, h}(这里max{a, b}表示取a, b两个值中的较大值)。 小Z还测量得到这个城市西北角的交叉路口海拔为0,东南角的交叉路口海拔为1(如上图所示),但其它交叉路口的海拔高度都无法得知。小Z想知道在最理想的情况下(即你可以任意假设其他路口的海拔高度),每天上班高峰期间所有人爬坡所消耗的总体力和的最小值。

Input

第一行包含一个整数n,含义如上文所示。 接下来4n(n + 1)行,每行包含一个非负整数分别表示每一条道路每一个方向的人流量信息。输入顺序:n(n + 1)个数表示所有从西到东方向的人流量,然后n(n + 1)个数表示所有从北到南方向的人流量,n(n + 1)个数表示所有从东到西方向的人流量,最后是n(n + 1)个数表示所有从南到北方向的人流量。对于每一个方向,输入顺序按照起点由北向南,若南北方向相同时由西到东的顺序给出(参见样例输入)。

Output

仅包含一个数,表示在最理想情况下每天上班高峰期间所有人爬坡所消耗的总体力和(即总体力和的最小值),结果四舍五入到整数。

Sample Input

1
1
2
3
4
5
6
7
8

Sample Output

3
【样例说明】
样例数据见下图。
最理想情况下所有点的海拔如上图所示。
【数据规模】
对于20%的数据:n ≤ 3;
对于50%的数据:n ≤ 15;
对于80%的数据:n ≤ 40;
对于100%的数据:1 ≤ n ≤ 500,0 ≤ 流量 ≤ 1,000,000且所有流量均为整数。

HINT

Source

Solution

典型的平面图,所以肯定利用其性质

很BZOJ1001狼爪兔子很像,直接平面图转对偶图求最短路即为最小割,那么就比较简单了

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 250010
int n;
struct EdgeNode{int next,to,len;}edge[maxn*];
int head[maxn],cnt;
void add(int u,int v,int w) {cnt++; edge[cnt].to=v; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].len=w;}
void insert(int u,int v,int w) {add(u,v,w);}
bool visit[maxn]; int dis[maxn],S,T;
#define inf 0x7fffffff
void spfa()
{
queue<int>q;
for (int i=S; i<=T; i++) dis[i]=inf;
q.push(S); visit[S]=; dis[S]=;
while (!q.empty())
{
int now=q.front(); q.pop(); visit[now]=;
for (int i=head[now]; i; i=edge[i].next)
if (dis[edge[i].to]>dis[now]+edge[i].len)
{
dis[edge[i].to]=dis[now]+edge[i].len;
if (!visit[edge[i].to])
visit[edge[i].to]=,q.push(edge[i].to);
}
}
}
int loc(int x,int y) {return (x-)*n+y;}
int main()
{
n=read(); S=,T=n*n+;
for (int i=; i<=n+; i++)
for (int x,j=; j<=n; j++)
{
x=read();
if (i==) insert(loc(i,j),T,x); else if (i==n+) insert(S,loc(i-,j),x); else insert(loc(i,j),loc(i-,j),x);
}
for (int i=; i<=n; i++)
for (int x,j=; j<=n+; j++)
{
x=read();
if (j==) insert(S,loc(i,j),x); else if (j==n+) insert(loc(i,j-),T,x); else insert(loc(i,j-),loc(i,j),x);
}
for (int i=; i<=n+; i++)
for (int x,j=; j<=n; j++)
{
x=read();
if (i==) insert(T,loc(i,j),x); else if (i==n+) insert(loc(i-,j),S,x); else insert(loc(i-,j),loc(i,j),x);
}
for (int i=; i<=n; i++)
for (int x,j=; j<=n+; j++)
{
x=read();
if (j==) insert(loc(i,j),S,x); else if (j==n+) insert(T,loc(i,j-),x); else insert(loc(i,j),loc(i,j-),x);
}
spfa();
printf("%d\n",dis[T]);
return ;
}

写spfa的sb选手...跑出dijkstra的10倍时间了....

【BZOJ-2007】海拔 最小割 (平面图转对偶图 + 最短路)的更多相关文章

  1. bzoj 1001 原图最小割转化为对偶图最短路

    题目大意: 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形 ...

  2. BZOJ 1001 狼抓兔子 (网络流最小割/平面图的对偶图的最短路)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 算法讨论: 1.可以用最大流做,最大流等于最小割. 2.可以把这个图转化其对偶图,然 ...

  3. BZOJ 2007 海拔(平面图最小割转对偶图最短路)

    首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...

  4. BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)

    题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...

  5. BZOJ 2007 海拔(平面图最小割-最短路)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2007 题意:给出一个n*n的格子,那么顶点显然有(n+1)*(n+1)个.每两个相邻顶点 ...

  6. bzoj 1001 平面图转对偶图 最短路求图最小割

    原题传送门http://www.lydsy.com/JudgeOnline/problem.php?id=1001 整理了下之前A的题 平面图可以转化成对偶图,然后(NlogN)的可以求出图的最小割( ...

  7. bzoj 2007 [Noi2010]海拔——最小割转最短路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2007 一个点的高度一定不是0就是1.答案一定形如一个左上角的连通块全是0的点.一个右下角的连 ...

  8. bzoj1001/luogu4001 狼抓兔子 (最小割/平面图最小割转对偶图最短路)

    平面图转对偶图:先在原图中加一个s->t的边,然后对每个面建一个点,对每条分隔两个面的边加一条连接这两个面对应点的边,边权等于原边权. 然后从刚才加的s->t分割出来的两面对应的两个点跑最 ...

  9. 【bzoj2007】[Noi2010]海拔 最小割+对偶图+最短路

    题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交 ...

随机推荐

  1. PL/SQL Block Structure

    [顶]ORACLE PL/SQL编程详解之二: PL/SQL块结构和组成元素(为山九仞,岂一日之功) 继上四篇:ORACLE PL/SQL编程之八:把触发器说透                ORAC ...

  2. 程序流程的控制之条件分支(Delphi)

    if语句主要来检测一个条件,并根据这个条件是True或者False来执行一段代码: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 var   I: Integer ...

  3. 临时表之IF-ELSE

    1.解决输出单列到临时表 场景:存储过程传入id,id为缺省的过滤条件,如果id为0,则查找出tt表中的所有id作为过滤条件 目的:id不为0时,过滤id 解决:用case when来代替if els ...

  4. POJ 1743 Musical Theme

    感觉最近好混乱......各种OJ都刷一点,感觉不太好......尤其是这种英文题 这道题一开始还没有看懂.听了ljh大犇的解释后终于明白了.下面我为英语和我一样的人翻译一下题面: 输入n个数.求最长 ...

  5. 带参数的CLR存储过程

    昨天有学习<简单创建与布署CLR存储过程>http://www.cnblogs.com/insus/p/4371762.html,知道怎样创建以及布署至SQL中去. 下面这个范例是实现CL ...

  6. 阿里云修改默认的ssh端口

    Linux服务器的ssh服务支持远程访问服务器,默认的ssh端口号是22.为了安全起见,很多用户会将端口号由22改为其他的端口号.  如果遇到修改端口号并重启ssh服务后,新的端口号不生效,请参考以下 ...

  7. 前端见微知著工具篇:Grunt实现自动化

    转载说明 本篇文章为转载文章,来源为[前端福利]用grunt搭建自动化的web前端开发环境-完整教程,之所以转载,是因为本文写的太详细了,我很想自己来写,但是发现跳不出这篇文章的圈子,因为写的详尽,所 ...

  8. JavaScript高级程序设计笔记 事件冒泡和事件捕获

    1.事件冒泡 要理解事件冒泡,就得先知道事件流.事件流描述的是从页面接收事件的顺序,比如如下的代码: <body> <div> click me! </div> & ...

  9. 【分布式协调】之理解paxos

    感叹一下 不得不说近几年国内软件行业发生了巨大的变化,之前几乎所有应用都围绕桌面展开,而近几年很多让人神魂颠倒的关键词一个接一个的映入眼帘:web2.0.移动应用.云计算.大数据.互联网的浪潮一波接着 ...

  10. php基础入门

    一.序言 由于新公司的需要,我也就从原来的asp专向了,php的学习中.希望通过自己的学习能够尽快的熟悉了解php 二.php独特的语法特色  1.引号问题 在php中单引号和双引号的作用基本相同,但 ...