f(n) = a1f(n − 1) + a2f(n − 2) + a3f(n − 3) + . . . + adf(n − d), for n > d,

可以用矩阵进行优化,直接构造矩阵,然后快速幂即可。

#include<map>
#include<set>
#include<string>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<time.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000001
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int MAXN = ;
struct Mat
{
ll a[MAXN][MAXN];
void Init(){
memset(a,,sizeof(a));
for(int i = ; i < ; i++){
a[i][i] = ;
}
}
};
ll fa[MAXN],d[MAXN];
ll n,k,MOD;
Mat a;
void Init()
{
memset(a.a,,sizeof(a.a));
for(int i = ; i < n-; i++){
a.a[i][i+] = ;
}
for(int i = ; i < n; i++){
a.a[n-][i] = fa[n - i - ];
}
}
Mat Matadd(Mat a,Mat b)
{
Mat c;
for(int i = ; i < n; i++){
for(int j = ; j < n; j++){
c.a[i][j] = (a.a[i][j] + b.a[i][j])%MOD;
}
}
return c;
}
Mat Matmul(Mat a,Mat b)
{
Mat c;
for(int i = ; i < n; i++){
for(int j = ; j < n; j++){
c.a[i][j] = ;
for(int k = ; k < n; k++){
c.a[i][j] += (a.a[i][k] * b.a[k][j])%MOD;
}
c.a[i][j] %= MOD;
}
}
return c;
}
Mat power(Mat a,ll n)
{
Mat c;
c.Init();
while(n){
if(n & ){
c = Matmul(c,a);
}
a = Matmul(a,a);
n >>= ;
}
return c;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("data","r",stdin);
#endif
while(~scanf("%lld%lld%lld",&n,&k,&MOD)){
if(!n && !k && !MOD)break;
for(int i = ; i < n; i++){
scanf("%lld",&fa[i]);
fa[i] %= MOD;
}
for(int i = ; i < n; i++){
scanf("%lld",&d[i]);
d[i] %= MOD;
}
Init(); a = power(a,k-);
ll ans = ;
for(int i = ; i < n; i++){
ans += a.a[][i] * d[i] % MOD;
ans %= MOD;
}
printf("%lld\n",ans);
}
return ;
}

uva10870 矩阵的更多相关文章

  1. UVA10870—Recurrences(简单矩阵快速幂)

    题目链接:https://vjudge.net/problem/UVA-10870 题目意思: 给出a1,a2,a3,a4,a5………………ad,然后算下面这个递推式子,简单的矩阵快速幂,裸题,但是第 ...

  2. UVA10870 Recurrences —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/UVA-10870 题意: 典型的矩阵快速幂的运用.比一般的斐波那契数推导式多了几项而已. 代码如下: #include <bit ...

  3. UVA10870 Recurrences (矩阵快速幂及构造方法详解)

    题意: F(n) =  a1 * F(n-1) + a2 * F(n-2)+ ···· + ad * F(n-d). 求给你的n . 很明显这是一道矩阵快速幂的题目. 题解: [Fn-1, Fn-2, ...

  4. UVA10870递推关系(矩阵乘法)

    题意:       给以个递推f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), for n > d.,给你n ...

  5. UVa 10870 & 矩阵快速幂

    题意: 求一个递推式(不好怎么概括..)的函数的值. 即 f(n)=a1f(n-1)+a2f(n-2)+...+adf(n-d); SOL: 根据矩阵乘法的定义我们可以很容易地构造出矩阵,每次乘法即可 ...

  6. uva10870

    https://vjudge.net/problem/UVA-10870 裸的矩阵快速幂 注意系数矩阵在前面 因为系数矩阵为d*d 方程矩阵为d * 1 放反了就是d * 1 d * d 不符合矩阵乘 ...

  7. C语言 · 矩阵乘法 · 算法训练

    问题描述 输入两个矩阵,分别是m*s,s*n大小.输出两个矩阵相乘的结果. 输入格式 第一行,空格隔开的三个正整数m,s,n(均不超过200). 接下来m行,每行s个空格隔开的整数,表示矩阵A(i,j ...

  8. 获取Canvas当前坐标系矩阵

    前言 在我的另一篇博文 Canvas坐标系转换 中,我们知道了所有的平移缩放旋转操作都会影响到画布坐标系.那在我们对画布进行了一系列操作之后,怎么再知道当前矩阵数据状态呢. 具体代码 首先请看下面的一 ...

  9. CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换

    CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换 三维世界里的旋转(rotate),可以用一个3x3的矩阵描述:可以用(旋转角度float+旋转轴vec3)描述.数学家欧拉证明了这两种形式可 ...

随机推荐

  1. 自动化工作之自动更新SVN

    任务计划程序 任务计划程序是Window自带的组件 微软文档 http://windows.microsoft.com/zh-cn/windows-vista/automate-tasks-with- ...

  2. 如何自学Android

    看到很多人提问非科班该如何学习编程,其实科班也基本靠自学.有句话叫"师傅领进门修行靠个人",再厉害的老师能教你的东西都是很有限的,真正的修行还是要靠自己.博主本科是数学专业,虽研究 ...

  3. 在脚本中使用export导出变量值

    LD_LIBRARY_PATH环境变量可以用于设置Linux动态库的位置,常见的用法如export LD_LIBRARY_PATH=/home/username/foo:$LD_LIBRARY_PAT ...

  4. BZOJ4197[NOI2005]寿司晚宴

    Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同 ...

  5. DataReader用法

    一.DataReader含义 DataReader相比于DataSet,DataReader是一个抽象类,所以不能用DataReader DR = new DataReader(),来构造函数创建对象 ...

  6. PHP PSR规范

    PHP PSR-1 基本代码规范(中文版)  http://segmentfault.com/a/1190000002521577PHP PSR-2 代码风格规范 (中文版)  http://segm ...

  7. HTTP04--CDN知识

    一.CDN用途及概念 目的: CDN是内容分布网路(Content Delivery Network)的简称,目的是将网站内容发布到最接近用户的边缘,使用户就近获取内容,提高相应速度. 使用机制: 目 ...

  8. sql server 创建只读帐号

    有时候为了方便查询一下数据,会创建个只读帐号,以免误写sql语句改了数据 步骤:用sa帐号连接后,安全性--登录名--新建 输入要新建的帐号密码,在服务器角色里面单勾一个public 在 用户映射里面 ...

  9. 从炉石传说的一个自杀OTK说起

    OTK就是one turn kill,不过这次我们要谈的OTK是自杀,对就是自己把自己给OTK了. 其实程序没有任何错误,只是恰巧碰上了这么个死循环. ps:文章最后有代码git地址 发动条件及效果: ...

  10. ASP.NET的编译原理

    http://www.cnblogs.com/mdy2001212/archive/2008/01/31/1060345.html