SPSS数据分析—描述性统计分析
描述性统计分析是针对数据本身而言,用统计学指标描述其特征的分析方法,这种描述看似简单,实际上却是很多高级分析的基础工作,很多高级分析方法对于数据都有一定的假设和适用条件,这些都可以通过描述性统计分析加以判断,我们也会发现,很多分析方法的结果中,或多或少都会穿插一些描述性分析的结果。
描述性统计主要关注数据的三大内容:
1.集中趋势
2.离散趋势
3.数据分布情况
描述集中趋势的指标有均值、众数、中位数,其中均值包括截尾均值、几何均值、调和均值等。
描述离散趋势的指标有频数、相对数、方差、标准差、标准误、全距、四分位间距、四分位数、百分位数、变异系数等。
注意:连续型变量和离散型变量的指标有所不同。
由于很多统计分析都有一个正态分布的假设,因此我们经常也会关注数据的分布特征,常用峰度系数和偏度系数来描述数据偏离正态分布的程度,也可以使用Bootstrap方法计算出结果与经典统计学方法计算出的结果进行对比,如果差异明显,则说明原数据呈偏态分布或存在极值
SPSS用于描述性统计分析的过程大部分都在分析—描述统计菜单中,另有一个在比较均值—均值菜单,虽然这几个过程用途不同,但是基本上都可以输出常用的指标结果。
一、分析—描述统计—频率
此过程可以输出连续型变量集中趋势和离散趋势的主要指标,还可以输出判断分布的直方图、峰度值
和偏度值,此外,该过程最主要的作用是输出频数表,结果举例如下:


二、分析—描述统计—描述
看起来似乎这个过程才是正统的描述统计分析过程,实际上该过程输出的内容并不多,也没有统计图可以调用,唯一特别的是该过程可以对数据进行标准化变换,并保存为新变量。
三、分析—描述统计—探索
探索性分析是对原有数据进行描述性统计的基础上,更进一步的描述数据,和前两种过程相比,它能提供更详细的结果。





四、分析—描述统计—比率
该过程主要用于对两个连续变量间的比率进行描述分析

输出的结果比较简单,只是指标的汇总表格,在此略去
五、分析—描述统计—交叉表
分类变量的描述性统计比较简单,主要就是看频数分布和构成比,基本用交叉表一个过程就可以完成,该过程虽然放在描述统计中,但是由于功能丰富,也经常被用来做列联表的推断分析。


六、分析—比较均值—均值
该过程在比较均值菜单中,但是大部分输出结果都是描述性统计指标
SPSS数据分析—描述性统计分析的更多相关文章
- SPSS数据分析方法不知道如何选择
一提到数学,高等数学,线性代数,概率论与数理统计,数值分析,空间解析几何这些数学课程,头疼呀.作为文科生,遇见这些课程时,通常都是各种寻求帮助,班上有位宅男数学很厉害,各种被女生‘围观’,这数学为 ...
- 快速掌握SPSS数据分析
SPSS难吗?无非就是数据类型的区别后,就能理解应该用什么样的分析方法,对应着分析方法无非是找一些参考资料进行即可.甚至在线网页SPSS软件直接可以将数据分析结果指标人工智能地分析出来,这有多难呢 ...
- SPSS数据分析—多维尺度分析
在市场研究中,有一种分析是研究消费者态度或偏好,收集的数据是某些对象的评分数据,这些评分数据可以看做是对象间相似性或差异性的表现,也就是一种距离,距离近的差异性小,距离远的差异性大.而我们的分析目的也 ...
- SPSS数据分析—对应分析
卡方检验只能对两个分类变量之间是否存在联系进行检验,如果分类变量有多个水平的话,则无法衡量每个水平间的联系.对此,虽然可以使用逻辑回归进行建模,但是如果分类变量的水平非常多,就需要分别设定哑变量,这样 ...
- 在Python里,用股票案例讲描述性统计分析方法(内容来自我的书)
描述性统计是数学统计分析里的一种方法,通过这种统计方法,能分析出数据整体状况以及数据间的关联.在这部分里,将用股票数据为样本,以matplotlib类为可视化工具,讲述描述性统计里常用指标的计算方法和 ...
- SPSS数据分析—聚类分析
多元分析的主要思想之一就是降维,我们已经讲过了很多降维的方法,例如因子分析.主成分分析,多维尺度分析等,还有一种重要的降维方法,就是聚类分析. 聚类分析实质上就是按照距离远近将数据分成若干个类别,使得 ...
- SPSS数据分析—生存分析
生存分析是对生存时间进行统计分析的一种技术,所谓生存时间,就是指从某一时间点起到所关心的事件发生的这段时间.这里的时间不一定就是钟表日历上的时间,也有可能是其他的度量单位,比如长度单位等. 生存时间有 ...
- SPSS数据分析—典型相关分析
我们已经知道,两个随机变量间的相关关系可以用简单相关系数表示,一个随机变量和多个随机变量的相关关系可以用复相关系数表示,而如果需要研究多个随机变量和多个随机变量间的相关关系,则需要使用典型相关分析. ...
- SPSS数据分析—主成分分析
我们在分析问题的时候,为了准确全面的反映问题,常常收集很多变量,这些变量之间往往具有相关性,导致存在大量的重复信息,直接使用的话,不但模型非常复杂,而且所引起的共线性问题会使模型准确度降低. 对此,我 ...
随机推荐
- Python学习【第二篇】Python入门
Python入门 Hello World程序 在linux下创建一个叫hello.py,并输入 print("Hello World!") 然后执行命令:python hello. ...
- RDIFramework.NET ━ 9.10 岗位(职位)管理 ━ Web部分
RDIFramework.NET ━ .NET快速信息化系统开发框架 9.10 岗位(职位)管理 -Web部分 岗位(职位)管理模块主要是针对组织机构的岗位(职位)进行管理,包括:增加.修改.删除. ...
- java 8 新特性
最近在IDEA的️驱使下,看了点java8的东西,链接贴一下,,,,, 1.Java 8新特性概述2.Java 8中的 Stream API 详解[3.Java 8新特性终极指南] 简单的使用看完新特 ...
- 30分钟LINQ教程
在说LINQ之前必须先说说几个重要的C#语言特性 一:与LINQ有关的语言特性 1.隐式类型 (1)源起 在隐式类型出现之前, 我们在声明一个变量的时候, 总是要为一个变量指定他的类型 甚至在fore ...
- android架构
周日没事,简单总结了一下Android开发中使用到的知识,以脑图的形式呈现.
- JavaScript encodeURI(), decodeURI(), encodeURIComponent(), decodeURIComponent()
URI: Uniform Resource Identifier encodeURI() And decodeURI() The encodeURI() function is used to en ...
- QT开发实战精解
无法打开包括文件<QApplication> No such file or directory 这一问题 解决办法,使用QApplication时必须在项目pro文件中添加一句 QT ...
- tomcat 内存溢出解决办法
- 将B表的字段内容插入到A表字段中
update hy_b_hacker as h , ( SELECT ( @rowNO := @rowNo +1 ) AS rowno, ip FROM ( SELECT * FROM hy_b_se ...
- 从零开始学习jQuery(转)
本系列文章导航 从零开始学习jQuery (一) 开天辟地入门篇 从零开始学习jQuery (二) 万能的选择器 从零开始学习jQuery (三) 管理jQuery包装集 从零开始学习jQuery ( ...