Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 8481   Accepted: 5479

Description

In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons each). Each button has a light. When a button is pressed, that button and each of its (up to four) neighbors above, below, right and left, has the state of its light reversed. (If on, the light is turned off; if off, the light is turned on.) Buttons in the corners change the state of 3 buttons; buttons on an edge change the state of 4 buttons and other buttons change the state of 5. For example, if the buttons marked X on the left below were to be pressed,the display would change to the image on the right. 

The aim of the game is, starting from any initial set of lights on in the display, to press buttons to get the display to a state where all lights are off. When adjacent buttons are pressed, the action of one button can undo the effect of another. For instance, in the display below, pressing buttons marked X in the left display results in the right display.Note that the buttons in row 2 column 3 and row 2 column 5 both change the state of the button in row 2 column 4,so that, in the end, its state is unchanged. 

Note: 
1. It does not matter what order the buttons are pressed. 
2. If a button is pressed a second time, it exactly cancels the effect of the first press, so no button ever need be pressed more than once. 
3. As illustrated in the second diagram, all the lights in the first row may be turned off, by pressing the corresponding buttons in the second row. By repeating this process in each row, all the lights in the first 
four rows may be turned out. Similarly, by pressing buttons in columns 2, 3 ?, all lights in the first 5 columns may be turned off. 
Write a program to solve the puzzle.

Input

The first line of the input is a positive integer n which is the number of puzzles that follow. Each puzzle will be five lines, each of which has six 0 or 1 separated by one or more spaces. A 0 indicates that the light is off, while a 1 indicates that the light is on initially.

Output

For each puzzle, the output consists of a line with the string: "PUZZLE #m", where m is the index of the puzzle in the input file. Following that line, is a puzzle-like display (in the same format as the input) . In this case, 1's indicate buttons that must be pressed to solve the puzzle, while 0 indicate buttons, which are not pressed. There should be exactly one space between each 0 or 1 in the output puzzle-like display.

Sample Input

2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0

Sample Output

PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1

Source

 
两种做法,一开始的做法是枚举,即枚举第0行的按不按的情况,这样第1行按的情况由第0行来决定,比如第a[0][3]=1,那么就要按[1][3]才能使得[0][3]=0,最后看第4行是不是全为0就可以了
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int a[][], rcd[][], ans[][];
int dir[][] = {{, }, {, }, {, -}, {-, }};
void push(int x, int y) {
ans[x][y] = ;
rcd[x][y] ^= ;
for(int k = ; k < ; ++k) {
int xx = x + dir[k][];
int yy = y + dir[k][];
if(xx < || xx >= || yy < || yy > ) continue;
rcd[xx][yy] ^= ;
}
}
bool check(int cur) {
for(int i = ; i < ; ++i) if(( << i) & cur) {
push(, i);
}
for(int i = ; i < ; ++i) {
for(int j = ; j < ; ++j)
if(rcd[i - ][j]) push(i, j);
}
for(int i = ; i < ; ++i) if(rcd[][i]) return false;
return true;
}
void solve() {
for(int i = ; i < ( << ); ++i) {
for(int r = ; r < ; ++r)
for(int c = ; c < ; ++c)
rcd[r][c] = a[r][c];
memset(ans, , sizeof ans);
if(check(i)) break;
}
}
void out() {
for(int i = ; i < ; ++i) {
for(int j = ; j < ; ++j)
if(j == ) printf("%d\n", ans[i][j]);
else printf("%d ", ans[i][j]);
}
}
int main() {
int _, cas = ; scanf("%d", &_);
while(_ --) {
for(int i = ; i < ; ++i)
for(int j = ; j < ; ++j)
scanf("%d", &a[i][j]);
printf("PUZZLE #%d\n", cas++);
solve();
out();
}
}

学到了另一种做法是高斯消元,可以形成(行数*列数)个方程,未知数的个数也是(行数*列数),即按下(i,j),相当于原矩阵异或x*Aij,x取0或1(不按或按)

Aij是按下位置(i,j)时所影响的位置代表的矩阵,比如3*3的矩阵,按下(1,1),那么A11 = 0 1 0, 按下(0,1), A01 = 1 1 1

                                        1 1 1           0 1 0

                                        0 1 0           0 0 0

设原矩阵为M

对于每个位置(i,j),我们考虑按或不按,那么就有M ^ x(i,j)*Aij = O, O表示0矩阵,等式两边同时异或M,那么有x(i,j)*Aij = M,两个矩阵相等,即为每个每个位置的元素对应相等,那么就可以建立(i*j)个方程组

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAXN = ;
int a[MAXN][MAXN], b[MAXN][MAXN], x[MAXN];
int equ, var;
void Gauss() {
int i, j, k, col, maxr, temp;
for(i = ; i <= var; ++i) x[i] = ;
for(k = , col = ; k < equ && col < var; k++, col++) {
maxr = k;
for(int i = k + ; i < equ; ++i)
if(abs(a[i][col]) > abs(a[maxr][col]))
maxr = i; if(a[maxr][col] == ) { k--; continue; }
if(k != maxr) {
for(j = k; j < var + ; ++j)
swap(a[k][j], a[maxr][j]);
}
for(i = k + ; i < equ; ++i) {
if(a[i][col] != ) {
// LCM = lcm(abs(a[i][col]), abs(a[k][col]));
// ta = LCM / abs(a[i][col]);
// tb = LCM / abs(a[k][col]);
// if(a[i][col] * a[k][col] < 0) tb = -tb;
for(j = col; j < var + ; ++j)
a[i][j] = a[i][j] ^ a[k][j];
}
}
}
for(i = var - ; i >= ; --i) {
temp = a[i][var];
for(j = i + ; j < var; ++j)
temp ^= (a[i][j] * x[j]);
x[i] = temp;
}
}
int vis[][];
int dir[][] = {{, }, {, }, {-, }, {, -} };
void get(int x, int y)
memset(vis, , sizeof vis);
vis[x][y] = ;
for(int i = ; i < ; ++i) {
int xx = x + dir[i][];
int yy = y + dir[i][];
if(xx < || xx >= || yy < || yy > ) continue;
vis[xx][yy] = ;
}
for(int i = ; i < ; ++i) {
for(int j = ; j <= ; ++j) printf("%d ", vis[i][j]);
puts("");
}
puts(""); void debug() {
for(int i = ; i < ; ++i) {
for(int j = ; j <= ; ++j)
printf("%d ", a[i][j]);
puts("");
}
}
void init() {
memset(a, , sizeof a);
equ = var = ;
int cur = ;
for(int i = ; i < ; ++i)
for(int j = ; j <= ; ++j)
a[cur++][] = b[i][j];
// debug();
cur = ;
for(int i = ; i < ; ++i) {
for(int j = ; j <= ; ++j) {
get(i, j);
int k = ;
for(int r = ; r < ; ++r)
for(int c = ; c <= ; ++c)
a[k++][cur] = vis[r][c];
cur++;
}
}
// debug();
} void out() {
for(int i = ; i < ; ++i) {
if((i + ) % == ) printf("%d\n", x[i]);
else printf("%d ", x[i]);
}
}
int main() {
int _, cas = ; scanf("%d", &_);
while(_ --) {
for(int i = ; i < ; ++i)
for(int j = ; j <= ; ++j)
scanf("%d", &b[i][j]);
init();
printf("PUZZLE #%d\n", cas++);
Gauss();
// debug();
out();
}
}

poj1222 EXTENDED LIGHTS OUT 高斯消元||枚举的更多相关文章

  1. POJ1222 EXTENDED LIGHTS OUT 高斯消元 XOR方程组

    http://poj.org/problem?id=1222 在学校oj用搜索写了一次,这次写高斯消元,haoi现场裸xor方程消元没写出来,真实zz. #include<iostream> ...

  2. [poj1222]EXTENDED LIGHTS OUT(高斯消元)

    题意:每个灯开启会使自身和周围的灯反转,要使全图的灯灭掉,判断灯开的位置. 解题关键:二进制高斯消元模板题. 复杂度:$O({n^3})$ #include<cstdio> #includ ...

  3. POJ 1222 EXTENDED LIGHTS OUT (高斯消元)

    题目链接 题意:5*6矩阵中有30个灯,操作一个灯,周围的上下左右四个灯会发生相应变化 即由灭变亮,由亮变灭,如何操作使灯全灭? 题解:这个问题是很经典的高斯消元问题.同一个按钮最多只能被按一次,因为 ...

  4. EXTENDED LIGHTS OUT (高斯消元)

    In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual ...

  5. POJ 1222 EXTENDED LIGHTS OUT [高斯消元XOR]

    题意: $5*6$网格里有一些灯告诉你一开始开关状态,按一盏灯会改变它及其上下左右的状态,问最后全熄灭需要按那些灯,保证有解 经典问题 一盏灯最多会被按一次,并且有很明显的异或性质 一个灯作为一个方程 ...

  6. POJ 3185 The Water Bowls(高斯消元-枚举变元个数)

    题目链接:http://poj.org/problem?id=3185 题意:20盏灯排成一排.操作第i盏灯的时候,i-1和i+1盏灯的状态均会改变.给定初始状态,问最少操作多少盏灯使得所有灯的状态最 ...

  7. BZOJ 1770: [Usaco2009 Nov]lights 燈( 高斯消元 )

    高斯消元解xor方程组...暴搜自由元+最优性剪枝 -------------------------------------------------------------------------- ...

  8. POJ 1681 Painter's Problem(高斯消元+枚举自由变元)

    http://poj.org/problem?id=1681 题意:有一块只有黄白颜色的n*n的板子,每次刷一块格子时,上下左右都会改变颜色,求最少刷几次可以使得全部变成黄色. 思路: 这道题目也就是 ...

  9. BZOJ1770:[USACO]lights 燈(高斯消元,DFS)

    Description 貝希和她的閨密們在她們的牛棚中玩遊戲.但是天不從人願,突然,牛棚的電源跳閘了,所有的燈都被關閉了.貝希是一個很膽小的女生,在伸手不見拇指的無盡的黑暗中,她感到驚恐,痛苦與絕望. ...

随机推荐

  1. sql语句按照汉字拼音首字母排序

    oracle : 在oracle9i中新增了按照拼音.部首.笔画排序功能.设置NLS_SORT值SCHINESE_RADICAL_M 按照部首(第一顺序).笔划(第二顺序)排序SCHINESE_STR ...

  2. Jquery 点击按钮将其背景图换成另一张,再次点击恢复默认图片

    这是Jquery代码: $(function () { $("#h1").toggle(function () { $("#h1").css("bac ...

  3. js正则匹配以固定格式结尾的字符串并匹配是手机访问,则跳转

    <script> //var pcUrl = "http://res.meadin.com/HotelData/98986_1.shtml"; var pcUrl = ...

  4. MyBatis之CRUD

    1 mybatis框架介绍 1.1回顾jdbc操作数据库的过程 1.2 mybatis开发步骤 A.提供一个SqlMapperConfig.xml(src目录下),该文件主要配置数据库连接,事务,二级 ...

  5. July 5th, Week 28th Tuesday, 2016

    If you smile when no one else is around, you really mean it. 独处的时候你的笑容才是发自内心的笑容. Human beings are so ...

  6. 实现 Bootstrap 基本布局

    看到了一篇 20 分钟打造 Bootstrap 站点的文章,内容有点老,重新使用 Bootstrap3 实现一下,将涉及的内容也尽可能详细说明. 1. 创建基本的页面 我们先创建一个基本的 HTML ...

  7. iOS - 开发类库

    开发类库   UI 项目名称 项目信息 1.MJRefresh 仅需一行代码就可以为UITableView或者CollectionView加上下拉刷新或者上拉刷新功能.可以自定义上下拉刷新的文字说明. ...

  8. [转]DB2时间类函数

    Src URL:http://www.cnblogs.com/wanghonghu/archive/2012/05/25/2518604.html 1.db2可以通过SYSIBM.SYSDUMMY1. ...

  9. JS手机浏览器判断(转)

    整理查询一下,js判断手机浏览器的方法 <script type="text/javascript"> /* * 智能机浏览器版本信息:包括微信内置 * */ var ...

  10. SQL数据库约束

    针对维护数据库的完整性,关系型数据库SQL提供了数据约束来管理数据,常用的约束有:外键.唯一.主键. 主键约束:标识数据的唯一,便于数据查询索引: 唯一约束:保证数据的唯一性:常用语法 alter t ...