SLAM (simultaneous localization and mapping),也称为CML (Concurrent Mapping and Localization), 即时定位与地图构建,或并发建图与定位。 SLAM最早由Smith、Self和Cheeseman于1988年提出。

  SLAM问题可以描述为: 机器人在未知环境中从一个未知位置开始移动,在移动过程中根据位置估计和地图进行自身定位,同时在自身定位的基础上建造增量式地图,实现机器人的自主定位和导航。

 

Visual SLAM(视觉SLAM)

Cameras are employed as the only exteroceptive sensor. It is called visual SLAM.

In the last 10years, published articles reflect a clear tendency for using vision as the only external sensorial perception system to solve the problem of SLAM (Paz et al. 2008; Davison et al. 2007; Klein and Murray 2007; Sáez and Escolano 2006; Piniés and Tardós 2008).

The main reason for this tendency is attributed to the capability for a system based on cameras to obtain range information, and also retrieving the environment’s appearance, color and texture, giving a robot the possibility of integrating other high-level tasks like detection and
recognition of people and places. Furthermore, cameras are less expensive, lighter and have lower power consumption.

Unfortunately, there might be errors in the data due to the following reasons: insufficient camera resolution, lighting changes, surfaces with lack of texture, blurred images due to fast movements, among other factors.

Visual odometry视觉里程计
In robotics and computer vision, visual odometry is the process of determining the position and orientation of a robot by analyzing the associated camera images. It has been used in a wide variety of robotic applications, such as on the Mars Exploration Rovers.
 

Bundle Adjustment 光束法平差

Given a set of images depicting a number of 3D points from different viewpoints, bundle adjustment can be defined as the problem of simultaneously refining the 3D coordinates describing the scene geometry as well as the parameters of the relative motion and the optical characteristics of the camera(s) employed to acquire the images, according to an optimality criterion involving the corresponding image projections of all points.

 

粒子滤波就是指:通过寻找一组在状态空间中传播的随机样本来近似的表示概率密度函数,用样本均值代替积分运算,进而获得系统状态的最小方差估计的过程,这些样本被形象的称为“粒子”,故而叫粒子滤波。《粒子滤波原理及其应用》胡士强  ISBN 9787030283702

机器人“绑架”指的是机器人在运动过程中发生了滑动,机器人本身并不知道此情况的发生。

数据关联(Data Association),也被称为一致性问题(Correspondence Problem)是SLAM面临的挑战之一。数据关联是指建立在不同时间、不同地点获得的传感器测量之间、传感器测量与地图特征之间或者地图特征之间的对应关系,以确定它们是否源于环境中同一物理实体的过程。数据关联的正确与否对于SLAM问题中的状态估计至关重要。

扫描匹配    在栅格地图的建立过程中主要是应用范围传感器(例如超声阵列、激光雷达等),传感器的一次测量称为一次扫描(Scan)。扫描点之间一般不存在直接的对应关系,所以此时的数据关联需要确定两幅或者多幅扫描中源于相同物理实体的区域,从而确定获得各个传感器扫描时刻机器人定位间的相对位置关系。这类数据关联问题一般称为扫描匹配问题(Scan Matching)。

根据SLAM 问题中环境地图的类型,可以将SLAM 算法分为

  • 基于特征地图的SLAM 算法(Feature-based SLAM )
  • 基于栅格地图的SLAM 算法(Grid-based SLAM)
  • 基于拓扑- 栅格地图SLAM 算法(Topological-Metric SLAM )
  • 基于密度地图的SLAM 算法(Dense SLAM)

根据SLAM 问题中模型的描述不同,可以将SLAM 算法分为:

1 基于状态空间描述的一类算法,如扩展卡尔曼滤波(Extended Kalman Filter,EKF )、压缩扩展卡尔曼滤波(Compressed Extended Kalman Filter, CEKF )等

2 基于样本集描述的一类算法,如Rao-Blackwellized  粒子滤波 SLAM,快速SLAM(FastSLAM)、DP-SLAM等

3 基于信息空间描述的一类算法,如扩展信息滤波(Extended Information Filter, EIF)、稀疏连接-树滤波(Thin Junction-Tree Filter, TJTF)等

4 基于差异描述的一类算法,如扫描匹配(Scan Matching)

SLAM学习笔记(1)基本概念的更多相关文章

  1. ROS_RGB-D SLAM学习笔记--室内环境测试

    ROS_RGB-D SLAM学习笔记 RTAB-Map's ros-pkg. RTAB-Map is a RGB-D SLAM approach with real-time constraints. ...

  2. JavaScript:学习笔记(2)——基本概念与数据类型

    JavaScript:学习笔记(2)——基本概念与数据类型 语法 1.区分大小写.Test 和 test 是完全不同的两个变量. 2.语句最好以分号结束,也就是说不以分号结束也可以. 变量 1.JS的 ...

  3. es6学习笔记-class之一概念

    前段时间复习了面向对象这一部分,其中提到在es6之前,Javasript是没有类的概念的,只从es6之后出现了类的概念和继承.于是乎,花时间学习一下class. 简介 JavaScript 语言中,生 ...

  4. Docker:学习笔记(1)——基础概念

    Docker:学习笔记(1)——基础概念 Docker是什么 软件开发后,我们需要在测试电脑.客户电脑.服务器安装运行,用户计算机的环境各不相同,所以需要进行各自的环境配置,耗时耗力.为了解决这个问题 ...

  5. OpenFlow Switch学习笔记(一)——基础概念

    OpenFlow Switch v1.4.0规范是在2013年10月14号发布,规范涵盖了OpenFlow Switch各个组件的功能定义.Controller与Switch之间的通信协议Open F ...

  6. SLAM学习笔记

    ORB_SLAM2源码: 获得旋转矩阵,来自这里:http://www.cnblogs.com/shang-slam/p/6406584.html 关于Covisibility图来自:http://b ...

  7. (1)《Head First HTML与CSS》学习笔记---HTML基本概念

    前言: 1.     这本书并没有面面俱到,涵盖所有内容,只提供作为初学者真正需要的东西:基本知识和信心.所以这不是唯一的参考书.(我买了一本<HTML5权威指南>作为参考书和这本一起看, ...

  8. 自然语言处理NLP学习笔记一:概念与模型初探

    前言 先来看一些demo,来一些直观的了解. 自然语言处理: 可以做中文分词,词性分析,文本摘要等,为后面的知识图谱做准备. http://xiaosi.trs.cn/demo/rs/demo 知识图 ...

  9. Elasticserach学习笔记-01基础概念

    本文系本人根据官方文档的翻译,能力有限.水平一般,如果对想学习Elasticsearch的朋友有帮助,将是本人的莫大荣幸. 原文出处:https://www.elastic.co/guide/en/e ...

随机推荐

  1. 《GK101任意波发生器》升级固件发布(版本:1.0.1build803)

    一.固件说明: 硬件版本:0,logic.3 固件版本:1.0.1.build803 编译日期:2014-08-06 ====================================== 二. ...

  2. HITOJ 2662 Pieces Assignment(状压DP)

    Pieces Assignment My Tags   (Edit)   Source : zhouguyue   Time limit : 1 sec   Memory limit : 64 M S ...

  3. PHP 设计模式 笔记与总结(4)PHP 链式操作的实现

    PHP 链式操作的实现 $db->where()->limit()->order(); 在 Common 下创建 Database.php. 链式操作最核心的地方在于:在方法的最后 ...

  4. win7硬盘安装ubuntu双系统——注意项

    WIN7 下硬盘安装ubuntu 12.04 博客分类: ubuntu   仅为网络上的资料整理 资料引用:http://www.ctocio.com.cn/35/12325035.shtml htt ...

  5. css修改,类似elememt.style样式修改

    使用!important 语法优先权. .yui-b { margin-left:0px ! important; }

  6. 【MySql】赶集网mysql开发36条军规

    [MySql]赶集网mysql开发36条军规 2012-05-14 14:02:33 分类: Linux   写在前面的话: 总是在灾难发生后,才想起容灾的重要性: 总是在吃过亏后,才记得曾经有人提醒 ...

  7. PHP面向对象程序设计的61条黄金法则

    PHP面向对象程序设计的61条黄金法则   你不必严格遵守这些原则,违背它们也不会被处以宗教刑罚.但你应当把这些原则看成警铃,若违背了其中的一条,那么警铃就会响起 . ----- Arthur J.R ...

  8. PDB文件:每个开发人员都必须知道的

    PDB Files: What Every Developer Must Knowhttp://www.wintellect.com/CS/blogs/jrobbins/archive/2009/05 ...

  9. iOS中利用CoreTelephony获取用户当前网络状态(判断2G,3G,4G)

    前言: 在项目开发当中,往往需要利用网络.而用户的网络环境也需要我们开发者去注意,根据不同的网络状态作相应的优化,以提升用户体验. 但通常我们只会判断用户是在WIFI还是移动数据,而实际上,移动数据也 ...

  10. 五一结束,北戴河,yy,差一点,不太敢

    collectionView Cell 设置颜色,蓝色,但是其他cell颜色也蓝色了,因为只写了if 没写else if (indexPath.item == 0) { cell.background ...