牛顿迭代法求n方根
一、简单推导

二、使用
借助上述公式,理论上可以求任意次方根,假设要求a(假设非负)的n次方根,则有xn=a,令f(x)=xn-a,则只需求f(x)=0时x的值即可。由上述简单推导知,当f(x)=0时,xn+1=xn,因此把f(x)=xn-a 代入上述迭代式进行迭代直至xn+1=xn即可。
实际中xn+1=xn可能永远达不到,可以根据给定精度△,当|xn+1-xn|<△成立时即可停止迭代,此时的xn+1即为所求。
下面以算术平方根和立方根举例。
(一)算术平方根
设待求算术平方根的数为a,其算术平方根为x,则x2=a,令f(x)=x2-a,代入上面的递推式有xn+1=xn-(xn2-a)/(2xn),整理得xn+1=(1/2)(xn+a/xn)
代码如下:
double sqrt(double a)
{
double x1=a;
double x2=a/;
while(fabs(x1-x2)>0.0000001)
{
//printf("%f\n",x2);
x1=x2;
x2=0.5*(x1+a/x1);
}
return x2;
}
(二)立方根
同理,令f(x)=x3-a,代入递推式有xn+1=xn-(xn3-a)/(3xn2),整理得xn+1=(1/3)(2xn+a/xn2)
代码如下:
double cubrt(double a)
{
double x1=a;
double x2=a/;
while(fabs(x1-x2)>0.0000001)
{
//printf("%f\n",x2);
x1=x2;
x2=(*x1+a/(x1*x1))/3.0;
}
return x2;
}
三、(题外话)手算算式平方根
顺便提下,在网上看到了一个手动列算式求解任意正整数算术平方根的方法,如下:

牛顿迭代法求n方根的更多相关文章
- 【清橙A1094】【牛顿迭代法】牛顿迭代法求方程的根
问题描述 给定三次函数f(x)=ax3+bx2+cx+d的4个系数a,b,c,d,以及一个数z,请用牛顿迭代法求出函数f(x)=0在z附近的根,并给出迭代所需要次数. 牛顿迭代法的原理如下(参考下图) ...
- 141. Sqrt(x)【牛顿迭代法求平方根 by java】
Description Implement int sqrt(int x). Compute and return the square root of x. Example sqrt(3) = 1 ...
- YTU 2405: C语言习题 牛顿迭代法求根
2405: C语言习题 牛顿迭代法求根 时间限制: 1 Sec 内存限制: 128 MB 提交: 562 解决: 317 题目描述 用牛顿迭代法求根.方程为ax3+bx2+cx+d=0.系数a,b ...
- C语言之基本算法11—牛顿迭代法求平方根
//迭代法 /* ================================================================== 题目:牛顿迭代法求a的平方根!迭代公式:Xn+1 ...
- 【Java例题】4.4使用牛顿迭代法求方程的解
4. 使用牛顿迭代法求方程的解:x^3-2x-5=0区间为[2,3]这里的"^"表示乘方. package chapter4; public class demo4 { publi ...
- 数学相关比较 牛顿迭代法求开方 很多个n的平方分之一
牛顿迭代法求开方 牛顿迭代法 作用: 求f(x) = 0 的解 方法:假设任意一点 x0, 求切线与x轴交点坐标x1, 再求切线与x轴交点坐标x2,一直重复,直到f(xn) 与0的差距在一个极小的范围 ...
- 牛顿迭代法实现平方根函数sqrt
转自利用牛顿迭代法自己写平方根函数sqrt 给定一个正数a,不用库函数求其平方根. 设其平方根为x,则有x2=a,即x2-a=0.设函数f(x)= x2-a,则可得图示红色的函数曲线.在曲线上任取一点 ...
- 牛顿迭代法--求任意数的开n次方
牛顿迭代法是求开n次方近似解的一种方法,本文参考. 引言 假如\(x^n = m\),我们需要求x的近似值. 我们设\(f(x) = x^n - m\), 那么也就是求该函数f(x)=0时与x轴的交点 ...
- C语言之基本算法25—牛顿迭代法求方程近似根
//牛顿迭代法! /* ============================================================ 题目:用牛顿迭代法求解3*x*x*x-2*x*x-16 ...
随机推荐
- 自定义WPF ListBox的选中项样式
首先介绍一种简单地方法:就是通过自定义SystemColors类的参数来自定义WPF ListBox选择颜色的,SystemColors的HighlightBrushKey和HighlightText ...
- 挖Linux中的古老缩略语
[2005-06-22 15:23][Nigel McFarlane][TechTarget] <<阅读原文>> Unix已经有35年历史了.许多人认为它开始于中世纪,这个中世 ...
- 3D数学基础:3D游戏动画中欧拉角与万向锁的理解
首先来看一下什么是欧拉角(Euler angles)?构件在三维空间中的有限转动,可依次用三个相对转角表示,即进动角.章动角和自旋角,这三个转角统称为欧拉角.——引自百度百科莱昂哈德·欧拉用欧拉角来描 ...
- PagerIndicator主题样式修改
默认的黑色好丑 所以大家需要动手改造一下, 1 打开 Manifest.xml <activity android:name="com.zb.zhihuianyang.MainActi ...
- 对SharePreference的封装
今天需要用到SharePreference来保存一些设置参数,因为要用到很多次 所以对它进行了封装: public class PrefUtils { public static void putBo ...
- iOS——百度统计
百度移动统计(http://mtj.baidu.com)是一款专业的移动应用统计分析工具,支持ios和android平台.开发者可以方便地通过嵌入统计SDK,对移动应用进行全方位监测,实时监控产品表现 ...
- Ajax基础详解2
沐晴又来更新啦,话说我们上回讲到Ajax中open方法的第三个参数异步和同步的问题,今天呢,就来继续往下唠,先接着上回的代码 var oBtn = document.getElementById('b ...
- 解决BeanNotOfRequiredTypeException: Bean named 'XXX' must be of type XXX, but was actually of type XXX问题
Java新手,困扰了一下午. 发布时总是报这样一个错误. org.springframework.beans.factory.BeanCreationException: Error creating ...
- Use Windows Azure AD to create SSO projects
Keywords Windows Azure AD, SSO Summary Use Windows Azure AD to create SSO projects Detailed Scenario ...
- 游戏服务器端引擎--DogSE的设计
就DogSE的设计目标来说,它定位为千人左右的页游服务器,在不修改任何底层模块的情况下可以快速的写各种游戏业务.就算是新人在熟悉2~3天后也可以开始写一个游戏. 项目可以从github获得,访问地址: ...