一、简单推导

二、使用

借助上述公式,理论上可以求任意次方根,假设要求a(假设非负)的n次方根,则有xn=a,令f(x)=xn-a,则只需求f(x)=0时x的值即可。由上述简单推导知,当f(x)=0时,xn+1=xn,因此把f(x)=xn-a 代入上述迭代式进行迭代直至xn+1=xn即可。

实际中xn+1=xn可能永远达不到,可以根据给定精度△,当|xn+1-xn|<△成立时即可停止迭代,此时的xn+1即为所求。

下面以算术平方根和立方根举例。

(一)算术平方根

设待求算术平方根的数为a,其算术平方根为x,则x2=a,令f(x)=x2-a,代入上面的递推式有xn+1=xn-(xn2-a)/(2xn),整理得xn+1=(1/2)(xn+a/xn)

代码如下:

double sqrt(double a)
{
double x1=a;
double x2=a/;
while(fabs(x1-x2)>0.0000001)
{
//printf("%f\n",x2);
x1=x2;
x2=0.5*(x1+a/x1);
}
return x2;
}

(二)立方根

同理,令f(x)=x3-a,代入递推式有xn+1=xn-(xn3-a)/(3xn2),整理得xn+1=(1/3)(2xn+a/xn2)

代码如下:

double cubrt(double a)
{
double x1=a;
double x2=a/;
while(fabs(x1-x2)>0.0000001)
{
//printf("%f\n",x2);
x1=x2;
x2=(*x1+a/(x1*x1))/3.0;
}
return x2;
}

三、(题外话)手算算式平方根

顺便提下,在网上看到了一个手动列算式求解任意正整数算术平方根的方法,如下:

牛顿迭代法求n方根的更多相关文章

  1. 【清橙A1094】【牛顿迭代法】牛顿迭代法求方程的根

    问题描述 给定三次函数f(x)=ax3+bx2+cx+d的4个系数a,b,c,d,以及一个数z,请用牛顿迭代法求出函数f(x)=0在z附近的根,并给出迭代所需要次数. 牛顿迭代法的原理如下(参考下图) ...

  2. 141. Sqrt(x)【牛顿迭代法求平方根 by java】

    Description Implement int sqrt(int x). Compute and return the square root of x. Example sqrt(3) = 1 ...

  3. YTU 2405: C语言习题 牛顿迭代法求根

    2405: C语言习题 牛顿迭代法求根 时间限制: 1 Sec  内存限制: 128 MB 提交: 562  解决: 317 题目描述 用牛顿迭代法求根.方程为ax3+bx2+cx+d=0.系数a,b ...

  4. C语言之基本算法11—牛顿迭代法求平方根

    //迭代法 /* ================================================================== 题目:牛顿迭代法求a的平方根!迭代公式:Xn+1 ...

  5. 【Java例题】4.4使用牛顿迭代法求方程的解

    4. 使用牛顿迭代法求方程的解:x^3-2x-5=0区间为[2,3]这里的"^"表示乘方. package chapter4; public class demo4 { publi ...

  6. 数学相关比较 牛顿迭代法求开方 很多个n的平方分之一

    牛顿迭代法求开方 牛顿迭代法 作用: 求f(x) = 0 的解 方法:假设任意一点 x0, 求切线与x轴交点坐标x1, 再求切线与x轴交点坐标x2,一直重复,直到f(xn) 与0的差距在一个极小的范围 ...

  7. 牛顿迭代法实现平方根函数sqrt

    转自利用牛顿迭代法自己写平方根函数sqrt 给定一个正数a,不用库函数求其平方根. 设其平方根为x,则有x2=a,即x2-a=0.设函数f(x)= x2-a,则可得图示红色的函数曲线.在曲线上任取一点 ...

  8. 牛顿迭代法--求任意数的开n次方

    牛顿迭代法是求开n次方近似解的一种方法,本文参考. 引言 假如\(x^n = m\),我们需要求x的近似值. 我们设\(f(x) = x^n - m\), 那么也就是求该函数f(x)=0时与x轴的交点 ...

  9. C语言之基本算法25—牛顿迭代法求方程近似根

    //牛顿迭代法! /* ============================================================ 题目:用牛顿迭代法求解3*x*x*x-2*x*x-16 ...

随机推荐

  1. Ubuntu优化-修改启动级别

    一 修改Ubuntu启动级别 sudo apt-get install sysv-rc-conf 执行: sysv-rc-conf 打x的表示开机启动. 二 启动级别 Ubuntu默认启动级别为2 r ...

  2. C++ Set & MultiSet

    转自http://www.cppblog.com/wanghaiguang/archive/2012/06/05/177627.html STL Set介绍集合(Set)是一种包含已排序对象的关联容器 ...

  3. freemarker语法简介

    ftl是一种模板标记语言,用于渲染数据,输入html结构.语法简介如下: ${book.name} ${book.name?if_exists} //值是否存在 ${book.name??} //值是 ...

  4. Arduino小车学习与研究博客

    Arduino小车学习与研究博客 信安系统设计基础实践模块 Arduino小车学习与研究 ================== 陈都(20135328) 余佳源(20135321) 莫凡(201352 ...

  5. 关于那些难改的bug

    多年的测试经验中,经常发现有这么一种现象:总有些提了的bug不能顺利的被修复.这些bug往往有4个走向: 1.在被发现的版本中最终被解决,但中途花费较多周折. 2.有计划的在后续的版本中被解决. 3. ...

  6. CAS ticket过期策略

    CAS提供可扩展的ticket过期策略,支持ticket-granting tickets (TGT)和service tickets (ST)的配置. CAS客户端存储用户信息一般使用session ...

  7. Stream 流操作

     Stream 类 先看下面的图 Stream 是所有流的抽象基类(不能被实例化,需要使用他的派生类FileStream/MemoryStream/BufferedStream).流是字节序列的抽象概 ...

  8. IDL简介与corba入门案例

    IDL接口定义语言简介   IDL用中立语言的方式进行描述,能使软件组建(不同语言编写的)间相互通信. IDL提供了一个桥来连接不同的系统. Corba 上的服务用IDL描述,将被映射为某种程序设计语 ...

  9. ubuntu的命令day1

    ls -i    显示所有的文件,包括隐藏的文件. 以  .  开头的文件都是隐藏文件,可以在终端用ls -i显示所有的文件.比如.ssh linux生成密钥的命令如下: 1. cd .ssh/    ...

  10. 改Bug

    一:新闻查询失败 1.velocity:R对象里的变量不区分大小写?  哦,应该是的! 2.表单的button是默认就有提交功能的哦! 3.velocity变量在页面上的解析:  为什么会出错呢? 难 ...