Leetcode: Graph Valid Tree && Summary: Detect cycle in undirected graph
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree. For example: Given n = 5 and edges = [[0, 1], [0, 2], [0, 3], [1, 4]], return true. Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], return false. Note: you can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
This problem can be solved by using union find, reference this blog:https://segmentfault.com/a/1190000003791051
复杂度
时间 O(N^M) 空间 O(N)
思路
判断输入的边是否能构成一个树,我们需要确定两件事:
这些边是否构成环路,如果有环则不能构成树
这些边是否能将所有节点连通,如果有不能连通的节点则不能构成树
因为不需要知道具体的树长什么样子,只要知道连通的关系,所以Union Find(并查集)相比深度优先搜索是更好的方法。我们定义一个并查集的数据结构,并提供标准的四个接口:
union
将两个节点放入一个集合中find
找到该节点所属的集合编号areConnected
判断两个节点是否是一个集合count
返回该并查集中有多少个独立的集合
具体并查集的原理,参见这篇文章。简单来讲,就是先构建一个数组,节点0到节点n-1,刚开始都各自独立的属于自己的集合。这时集合的编号是节点号。然后,每次union操作时,我们把整个并查集中,所有和第一个节点所属集合号相同的节点的集合号,都改成第二个节点的集合号。这样就将一个集合的节点归属到同一个集合号下了。我们遍历一遍输入,把所有边加入我们的并查集中,加的同时判断是否有环路。最后如果并查集中只有一个集合,则说明可以构建树。
注意
因为要判断是否会产生环路,union方法要返回一个boolean,如果两个节点本来就在一个集合中,就返回假,说明有环路
Union Find based on quick find: 17ms
public class Solution {
public boolean validTree(int n, int[][] edges) {
unionfind uf = new unionfind(n);
for (int i=0; i<edges.length; i++) {
if (uf.areConnected(edges[i][0], edges[i][1])) return false;
else {
uf.union(edges[i][0], edges[i][1]);
}
}
return uf.count()==1;
} public class unionfind {
int[] ids; //union id for each node
int cnt; //the number of independent union public unionfind(int size) {
this.ids = new int[size];
for (int i=0; i<size; i++) {
ids[i] = i;
}
this.cnt = size;
} public boolean union(int i, int j) {
int src = find(i);
int dst = find(j);
if (src != dst) {
for (int k=0; k<ids.length; k++) {
if (ids[k] == src) {
ids[k] = dst;
}
}
cnt--;
return true;
}
return false;
} public int find(int i) {
return ids[i];
} public boolean areConnected(int i, int j) {
return find(i)==find(j);
} public int count() {
return cnt;
}
}
}
faster: Union Find based on quick union: 3ms
public class Solution {
public boolean validTree(int n, int[][] edges) {
unionfind uf = new unionfind(n);
for (int i=0; i<edges.length; i++) {
if (uf.areConnected(edges[i][0], edges[i][1])) return false;
else {
uf.union(edges[i][0], edges[i][1]);
}
}
return uf.count()==1;
} public class unionfind {
int[] ids; //union id for each node
int cnt; //the number of independent union public unionfind(int size) {
this.ids = new int[size];
for (int i=0; i<size; i++) {
ids[i] = i;
}
this.cnt = size;
} public void union(int i, int j) {
int rooti = find(i);
int rootj = find(j);
ids[rooti] = rootj;
this.cnt--;
} public int find(int i) {
while (ids[i] != i) i = ids[i];
return i;
} public boolean areConnected(int i, int j) {
return find(i)==find(j);
} public int count() {
return cnt;
}
}
}
Summary:
Dectect cycle in directed graph:
Detect cycle in a directed graph is using a DFS. Depth First Traversal can be used to detect cycle in a Graph. DFS for a connected graph produces a tree. There is a cycle in a graph only if there is a back edge present in the graph. A back edge is an edge that is from a node to itself (selfloop) or one of its ancestor in the tree produced by DFS. In the following graph, there are 3 back edges, marked with cross sign. We can observe that these 3 back edges indicate 3 cycles present in the graph.
To detect a back edge, we can keep track of vertices currently in recursion stack of function for DFS traversal. If we reach a vertex that is already in the recursion stack, then there is a cycle in the tree. The edge that connects current vertex to the vertex in the recursion stack is back edge. We have used recStack[] array to keep track of vertices in the recursion stack.
Detect cycle in undirected graph:
method 1: Union Find The time complexity of the union-find algorithm is O(ELogV).
method 2: DFS + parent node Like directed graphs, we can use DFSto detect cycle in an undirected graph in O(V+E) time. We do a DFS traversal of the given graph. For every visited vertex ‘v’, if there is an adjacent ‘u’ such that u is already visited and u is not parent of v, then there is a cycle in graph. If we don’t find such an adjacent for any vertex, we say that there is no cycle. The assumption of this approach is that there are no parallel edges between any two vertices.
Leetcode: Graph Valid Tree && Summary: Detect cycle in undirected graph的更多相关文章
- [LeetCode] 261. Graph Valid Tree 图是否是树
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- [Locked] Graph Valid Tree
Graph Valid Tree Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is ...
- [LeetCode#261] Graph Valid Tree
Problem: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair o ...
- [LeetCode] Graph Valid Tree 图验证树
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- LeetCode Graph Valid Tree
原题链接在这里:https://leetcode.com/problems/graph-valid-tree/ 题目: Given n nodes labeled from 0 to n - 1 an ...
- [LeetCode] 261. Graph Valid Tree _ Medium tag: BFS
Given n nodes labeled from 0 to n-1 and a list of undirected edges (each edge is a pair of nodes), w ...
- Graph Valid Tree -- LeetCode
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- [Swift]LeetCode261.图验证树 $ Graph Valid Tree
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- Graph Valid Tree
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
随机推荐
- Yii2 捕获错误日志
在技术开发中,捕获程序框架错误,是非常必要的一件事情,我们公司使用Yii2框架,简单说下Yii2的错误捕获处理 Yii2 web应用 1 配置如下 其中errorHandler就是错误处理配置,执行E ...
- JBoss的安装与配置(对应eclipse配置)【转】
安装JBoss纯粹是目的就是学习EJB3...至少现在是这样的 EJB需要运行在EJB容器中.每个J2EE应用服务器都含有EJB容器和Web容器.这样,既支持运行EJB,也可以运行Web应用 目前EJ ...
- ManualResetEvent和AutoResetEvent的区别实例
ManualResetEvent和AutoResetEvent的作用可以理解为在线程执行中插入停顿点flag终止程序运行,然后通过设置flag的状态来使得程序继续运行. 两者的区别是:ManualRe ...
- 【Android测试】【第十四节】Appium——简述
◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/5124340.html 前言 同样的,这一篇我要介绍的也是一 ...
- 借用layer让弹层不限制在iframe内部
使用方法: 1 除了layer的success,end,cancel回掉函数以外其它的layer参数都可以使用. 2 使用前在layer的js后边把该js引入(可以命名为layerExtend). 3 ...
- 数据库.mdf
对于.mdf文件和.ldf数据库文件, 首先打开SQL Server Management Studio Express,登陆上后,右键点击数据库,附加->选择目标文件就可以了.
- Selenium2学习-029-WebUI自动化实战实例-027-判断元素是否存在
非常简单的源码,敬请各位小主参阅.若有不足之处,敬请大神指正,不胜感激! /** * Verify the element exist or not * * @author Aaron.ffp * @ ...
- 关于lnmp下搭thinkPHP无法找到指定静态页面
我在lnmp 下架了一个thinkPHP框架,非常奇怪,在环境都配置好后,我在url里输入localhost:10007/index.php/member/login,正常来说应该显示login.ht ...
- Oracle利用external table 查看trace文件
1. 用下面的语句找到trace文件的路径 select * from v$diag_info where name='Default Trace File'; 2. 创建一个directory用来加 ...
- rank 和 星星评级
我们常常看到打分,如下图 这样的效果有几种方法 1.用:lt(index) /* $('dl').each(function(){ var ths = $(this); $(this).find('d ...