最小生成树计数

题目描述

现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对$31011$的模就可以了.

输入

第一行两个数$n$和$m$,其中$1\le n\le 100,1\le m\le 1000$,分别表示无向图的节点数和边数.每个节点用$1 \ldots n$的整数编号.接下来$m$行,每行三个整数$a,b,c$表示节点$a$与节点$b$之间有一条权值为$c$的边.$1\le c\le 1 \times 10^9$.保证没有自环或重边. //$c$相同的边不超过$10$条.

输出

输出不同的最小生成树有多少个.你只需要输出数量对$31011$的模就可以了.

样例

IN
4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
OUT
8

大家应该都知道Kruskal吧...还是稍微提一下好了.
Kruskal是一种最小生成树算法,就是将途中所有边从小到大排序再挨个扫描,每扫描到一条新边时就查看下这条边连接的两端点是否属于同一个联通块,如果是的就不加进去,否则就加进去.大家可以认为这个算法是'显然正确'的.至于为什么是正确的呢,我的想法不够严谨,我就不拉出来献丑了.
好了,一条边被Kruskal选中是要拼RP的.也就是说,如果在sort时,一条边比另一条边拍得更前面,它选中的机率越大.
这时,如果我们将处理一个特定权值$n$的所有边看成一个阶段,这时我们先不要将这些边急着加进去,而是一起处理.具体方法就是设上一个阶段的生成森林为$F_L$,如果加进一条$n$的边使得$F_L$中的一棵树变成了仙人掌,我们就弃掉它[P].反之,将它加入一个临时图$T_N$中.阶段完成后,将$T_N$加入缩点后的$F_L$中,求它每个子联通块的生成树个数,相乘,再把这个结果和上一个阶段的结果相乘就是这个阶段的结果了.当然我们无需显式地缩点,我们只需要对联通块直接计算,因为我们将每个$F_L$联通块之内的边都去掉了[P].
具体细节很难想,不过是一道好题.比较有意思.注意每个阶段末要随便选择一种方案啊.

-------------------------------------------------------------

代码

(不会计算行列式怎么破= =)

int det(int a[][N],int n)
{
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
a[i][j]%=mod;
int ret=1;
for(int i=1; i<n; i++)
{
for(int j=i+1; j<n; j++)
while(a[j][i])
{
int t=a[i][i]/a[j][i];
for(int k=i; k<n; k++)
a[i][k]=(a[i][k]-a[j][k]*t)%mod;
for(int k=i; k<n; k++)
swap(a[i][k],a[j][k]);
ret=-ret;
}
if(a[i][i]==0)
return 0;
ret=ret*a[i][i]%mod;
}
if(ret<0)
ret=-ret;
return (ret+mod)%mod;
}

神奇的det算法...似乎也是高斯消元,怎么没有逆元?

[BZOJ]1016 JSOI2008 最小生成树计数的更多相关文章

  1. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  2. [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】

    题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...

  3. BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)

    题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...

  4. bzoj 1016 [JSOI2008]最小生成树计数——matrix tree(相同权值的边为阶段缩点)(码力)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 就是缩点,每次相同权值的边构成的联通块求一下matrix tree.注意gauss里的 ...

  5. bzoj 1016: [JSOI2008]最小生成树计数【dfs+克鲁斯卡尔】

    有一个性质就是组成最小生成树总边权值的若干边权总是相等的 这意味着按边权排序后在权值相同的一段区间内的边能被选入最小生成树的条数是固定的 所以先随便求一个最小生成树,把每段的入选边数记录下来 然后对于 ...

  6. BZOJ 1016 [JSOI2008]最小生成树计数 ——Matrix-Tree定理

    考虑从小往大加边,然后把所有联通块的生成树个数计算出来. 然后把他们缩成一个点,继续添加下一组. 最后乘法原理即可. 写起来很恶心 #include <queue> #include &l ...

  7. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  8. 1016: [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6200  Solved: 2518[Submit][St ...

  9. 【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集

    最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小 ...

随机推荐

  1. angular学习-入门基础

    angular .caret,.dropup>.btn>.caret{border-top-color:#000!important}.label{border:1px solid #00 ...

  2. 2016 版 Laravel 系列入门教程(三)【最适合中国人的 Laravel 教程】

    本教程示例代码见: https://github.com/johnlui/Learn-Laravel-5 在任何地方卡住,最快的办法就是去看示例代码. 在本篇文章中,我们将尝试构建一个带后台的简单博客 ...

  3. linux 查看服务器性能常用命令

    一.top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器   下面详细介绍它的使用方法.top是一个动态显示过程,即可以通过用户按键来 ...

  4. 第一次作业---安卓开发工具Android studio发展演变

    Android studio2013年由谷歌推出,用于安卓端的开发,我所使用的版本为2015年5月推出的1.3.2. 1.安装.配置.作为麻瓜的我,刚刚接触Android studio时在安装方面走了 ...

  5. .Net MVC中访问PC网页时,自动切换到移动端对应页面

    随着移动端的流行,越来越的网站,除了提供PC网页之外,也提供了移动端的H5页面,手机在访问www.xxx.com的时候,能自动跳转到mobile.xxx.com.网上很多在实现时也能使用JS直接进行跳 ...

  6. 后台管理UI推荐

    目录 一.EasyUI 二.DWZ JUI 三.HUI 四.BUI 五.Ace Admin 六.Metronic 七.H+ UI 八.其它UI 九.总结 最近要做一个企业的OA系统,以前一直使用Eas ...

  7. 思维导图XMiand

    XMiand: 异常强大的国产思维导图工具,还能将图同步到服务器上.做思维导图和头脑风暴必备软件,还能转换绘制鱼骨图.二维图.树形图.逻辑图.组织结构图.

  8. TYVJ1305 最大子序和

    描述 输入一个长度为n的整数序列,从中找出一段不超过M的连续子序列,使得整个序列的和最大. 例如 1,-3,5,1,-2,3 当m=4时,S=5+1-2+3=7当m=2或m=3时,S=5+1=6 输入 ...

  9. 透透彻彻IoC(你没有理由不懂!)

    http://www.myexception.cn/open-source/418322.html 引述:IoC(控制反转:Inverse of Control)是Spring容器的内核,AOP.声明 ...

  10. Spring学习4-面向切面(AOP)之Spring接口方式

    一.初识AOP    关于AOP的学习可以参看帮助文档:spring-3.2.0.M2\docs\reference\html目录下index.html的相关章节       1.AOP:Aspect ...