\(\bold{Part\ 0}\) 目录 \(/\ \bold{Contents}\)

  • \(\bold{Part\ 1}\) 题目大意 \(/\ \bold{Item\ content}\)

  • \(\bold{Part\ 2}\) 题解 \(/\ \bold{Solution}\)

    • \(\bold{Part\ 2.1}\text{ C}\) + + 神奇整数类型之 \(\text{\_\_int128 }/\ \bold{C}\) + + \(\bold{Magic\ integer\ type}\text{ \_\_int128}\)

      • \(\bold{Part\ 2.1.1 }\text{ \_\_int128}\) 是什么 \(/\ \bold{What\ is\ the }\text{ \_\_int128}\)

\(\bold{Part\ 1}\) 题目大意 \(/\ \bold{Item\ content}\)

共有 \(T\) 组数据。给定 \(L,R\) ,请你计算 \(L^2+(L+1)^2+(L+2)^2+\cdots+(R-2)^2+(R-1)^2\) 。

对于 \(100\%\) 的数据:\(1\le T\le 10^6,\ 1\le L\le R\le 10^{12}\) 。

\(\bold{Part\ 2}\) 题解 \(/\ \bold{Solution}\)

首先我们看一下数据范围(见上)。首先 \(T\le10^6\) ,那么算法的时间复杂度总体只可以是 \(O(n)\) ,每一组数据的计算的时间复杂度就只能是 \(O(1)\) 。然后是 \(L\le R\le 10^{12}\) ,这个就是这道题目的难点,也是这道题为什么难度是 \(\small\colorbox{#ffc116}{\tt{\color{white}普及/提高-}}\) 的原因了。这个数据的计算结果开到 \(\text{long long}\) 也不行。所以这就考虑到了我们日常的积累。\(\text{C}\) + + 中有一个整数类型是完全可以支持这个数据结构的,那就是 \(\text{\_\_int128}\) 。我们先来一起了解一下这个数据结构。

\(\bold{Part\ 2.1}\text{ C}\) + + 神奇整数类型之 \(\text{\_\_int128 }/\ \bold{C}\) + + \(\bold{Magic\ integer\ type}\text{ \_\_int128}\)

\(\bold{Part\ 2.1.1 }\text{ \_\_int128}\) 是什么 \(/\ \bold{What\ is\ the }\text{ \_\_int128}\)

【题解】U405180 计算平方和的更多相关文章

  1. UVA 11076 Add Again 计算对答案的贡献+组合数学

    A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs ...

  2. 牛客练习赛42 C 反着计算贡献

    https://ac.nowcoder.com/acm/contest/393/C 题意 给你一个矩阵, 每次从每行挑选一个数,组成一个排列,排列的和为不重复数字之和,求所有排列的和(n,m<= ...

  3. ZOJ 3872 计算对答案的贡献

                                                   D - Beauty of Array Description Edward has an array A ...

  4. Educational Codeforces Round 95(A-C题解)

    A. Buying Torches 题目:http://codeforces.com/contest/1418/problem/A 题解:计算一个公式:1+n*(x-1)=(y+1)*k,求满足该条件 ...

  5. 头条面试题:判断一个数是否是happy number(每一位的平方和最终为1)

    朋友面试头条二轮了,一轮的题目请看这一篇:头条面试题:求用户在线峰值和持续时间 这次的面试题目是:判断一个数是否是happy number(每一位的平方和最终为1) 知道题目首先要理解题目.所谓hap ...

  6. LeetCode解题记录(双指针专题)

    1. 算法解释 双指针主要用于遍历数组,两个指针指向不同的元素,从而协同完成任务.也可以延伸到多个数组的多个指针. 若两个指针指向同一数组,遍历方向相同且不会相交,则也称为滑动窗口(两个指针包围的区域 ...

  7. PAT甲级 1001. A+B Format (20)

    题目原文: Calculate a + b and output the sum in standard format -- that is, the digits must be separated ...

  8. Amazon验证码机器算法识别

    Amazon验证码识别 在破解Amazon的验证码的时候,利用机器学习得到验证码破解精度超过70%,主要是训练样本不够,如果在足够的样本下达到90%是非常有可能的. update后,样本数为2800多 ...

  9. python3验证码机器学习

    python3验证码机器学习 文档结构为 -- iconset -- ... -- jpg -- captcha.gif -- py -- crack.py 需要的库 pip3 install pil ...

  10. leetcode-【简单题】Happy Number

    题目: Write an algorithm to determine if a number is "happy". A happy number is a number def ...

随机推荐

  1. jdk1.8(java8)新特性

    借鉴之:https://blog.csdn.net/qq_28410283/article/details/80601495 Lambda 表达式: //1.Lambda 表达式,也可称为闭包,它是推 ...

  2. Webpack Vue瘦身,感受快到飞起的加载速度!

    症结 在利用webpack脚手架搭建vue项目后,往往最终打包的.js和.css文件过于庞大,造成首次加载的时候白屏时间过长,影响用户体验,下图为未经任何优化直接npm run build之后的情况: ...

  3. vue3常用 Composition API

    1.拉开序幕的setup 理解:Vue3.0中一个新的配置项,值为一个函数. setup是所有Composition API(组合API)" 表演的舞台 ". 组件中所用到的:数据 ...

  4. Ceph学习笔记(1)- 架构概述

    简介 Ceph的目标是采用商业硬件来构建大规模的.具有高可用.高扩展.高性能的分布式存储系统,ceph具有如下特点: 软件定义存储:Ceph不需要特定的硬件,在主流的Linux发行版等类Unix操作系 ...

  5. 机器学习-无监督机器学习-主成分分析PCA-23

    目录 1. 降维的方式 2. PCA的一般步骤 3. 思想2 最小化投影距离 4. Kernelized PCA 1. 降维的方式 对于维度灾难.数据冗余,这些在数据处理中常见的场景,我们不得不进一步 ...

  6. docker 安装 ElasticSearch 和 Kibana 及ik 中文分词器

    本文为博主原创,未经允许不得转载: 1. 使用 docker 下载 elasticsearch  7.6.1 docker pull elasticsearch:7.6.1 2. 启动 elastic ...

  7. idea报错 "cannot access ..."的解决办法

    File -> Invalidate Caches -> Invalidate and Restart

  8. TLS1.3的简单学习

    TLS1.3的简单学习 TLS的历史 From GTP3.5 TLS(传输层安全)是一种加密协议,旨在确保 Internet 通信的安全性和隐私保护.下面是 TLS 的历史概述: SSL(安全套接层) ...

  9. [转帖]Linux下清理内存和Cache方法见下文:

    https://www.cnblogs.com/the-tops/p/8798630.html 暂时目前的环境处理方法比较简单: 在root用户下添加计划任务: */10 * * * * sync;e ...

  10. [转帖]CentOS-7-x86_64-DVD-2009 rpm包列表(centos7.9)

    https://www.cnblogs.com/hiyang/p/14803391.html 文件数 4071 个,共3.8G 复制389-ds-base-1.3.10.2-6.el7.x86_64. ...