前言

哈喽,各位朋友们,这里是virobotics(仪酷智能),这两天有朋友私信问之前给大家介绍的工具包都可以实现什么功能,最新的一些模型能否使用工具包加载,今天就给大家介绍一下博主目前使用工具包已经实现的深度视觉模型及案例

下表为前期写过的一些范例介绍,朋友们可以按需点击查看

名字 链接
使用LabVIEW人工智能视觉工具包快速实现图像读取与采集 https://blog.csdn.net/virobotics/article/details/123663532
使用LabVIEW人工智能视觉工具包快速实现传统Opencv算子的调用 https://blog.csdn.net/virobotics/article/details/123817051
使用LabVIEW OpenCV DNN实现手写数字识别 https://blog.csdn.net/virobotics/article/details/123880476
使用LabVIEW OpenCV dnn实现图像分类 https://blog.csdn.net/virobotics/article/details/123982933
使用LabVIEW OpenCV dnn实现物体识别(Object Detection) https://blog.csdn.net/virobotics/article/details/124008160
【YOLOv5】LabVIEW+YOLOv5快速实现实时物体识别(Object Detection) https://blog.csdn.net/virobotics/article/details/124929483
【YOLOv5】LabVIEW+OpenVINO让你的YOLOv5在CPU上飞起来 https://blog.csdn.net/virobotics/article/details/124951862
【YOLOv5】使用LabVIEW ONNX Runtime部署 TensorRT加速,实现YOLOv5实时物体识别 https://blog.csdn.net/virobotics/article/details/124981658
使用LabVIEW实现Mask R-CNN图像实例分割 https://blog.csdn.net/virobotics/article/details/125194701
使用LabVIEW实现基于pytorch的DeepLabv3图像语义分割 https://blog.csdn.net/virobotics/article/details/124998636
使用LabVIEW实现 DeepLabv3+ 语义分割 https://blog.csdn.net/virobotics/article/details/125264040
LabVIEW+OpenVINO在CPU上部署新冠肺炎检测模型实战 https://blog.csdn.net/virobotics/article/details/125260923
YOLOX目标检测实战:LabVIEW+YOLOX ONNX模型实现推理检测 https://blog.csdn.net/virobotics/article/details/125412732
百度飞桨PP-YOLOE ONNX 在LabVIEW中的部署推理 https://blog.csdn.net/virobotics/article/details/126231434
YOLOv6在LabVIEW中的推理部署 https://blog.csdn.net/virobotics/article/details/126356929
LabVIEW图形化的AI视觉开发平台(非NI Vision)VI简介 https://blog.csdn.net/virobotics/article/details/127497688
仪酷LabVIEW AI视觉工具包及开放神经网络交互工具包常见问题解答 https://blog.csdn.net/virobotics/article/details/127449831

一、实现物体识别

无论使用何种框架训练物体检测模型,都可以无缝集成到LabVIEW中,并使用工具包提供的CUDA、tensorRT接口实现加速推理,模型包括但不限于:

  • yolov3、yolov4、yolov5、yolov6、yolov7、pp-yoloe、yolox等
  • torchvision中的图像分类、目标检测模型等

如下为已经实现中的一部分范例

  • yolov4实现目标检测:

  • 基于onnx,yolov5使用tensorRT实现推理加速:

  • NI vision采集图像、tensorRT加速实现yolov5目标检测

  • yolov5实现口罩检测:

  • yolov5实现安全帽检测:

  • yolov6实现目标检测:
  • yolox实现目标检测:
  • 百度PP-YOLOE实现目标检测:

二、实现图像分割

图像分割是当今计算机视觉领域的关键问题之一。从宏观上看,图像分割是一项高层次的任务,为实现场景的完整理解铺平了道路。场景理解作为一个核心的计算机视觉问题,其重要性在于越来越多的应用程序通过从图像中推断知识来提供营养。随着深度学习软硬件的加速发展,一些前沿的应用包括自动驾驶汽车、人机交互、医疗影像等,都开始研究并使用图像分割技术。

本次集成的工具包提供了多种图像分割的调用模块,并实现了GPU模式下TensorRT的加速运行。如:

语义分割:Segnet、deeplabv1~deeplabv3、deeplabv3+、u-net等;

实例分割:Mask-RCNN、PANet等

  • deeplab实现分割

  • mask Rcnn实现图像分割


三、自然场景下的文字识别

工具包提供了文本检测定位(DB_TD500_resnet50、EAST)、文本识别的模块(CRNN),用户可以使用该模块实现自然场景下的中英文文字识别

应用:身份证识别、表单识别、包装盒标签检测等

  • 简单文字识别

  • 包装盒标签检测

  • 复杂背景字母数字检测

四、人脸检测与识别

工具包提供了人脸检测与识别的模块,用户可以使用该模块实现人脸检测与识别

五、人体关键点检测

机器学习ML5扩展功能中的Keypoint Rcnn功能可以实现17个人体姿态识别以及追踪位置,通过此功能可以进行一些姿态控制应用,且此功能不用连接网络,只需要一个摄像头即可实现。

姿势估计是指计算机视觉技术,用于检测图像和视频中的人类图形,以便确定某人的肘部出现在图像中的位置。需要说明的是,该技术无法识别图像中的人员,不存在与姿势检测相关的个人身份信息。该算法只是估计关键体关节的位置

结合了Realsense的姿态识别,即可定位人体每个部位的精确位置。

六、工具包下载

如需下载工具包可查看指定博文,如需获取最新版本工具包,可关注微信公众号:VIRobotics,回复关键字:LabVIEW AI工具包

总结

以上就是今天要给大家分享的内容。如有笔误,还请各位及时指正。后续还会继续给各位朋友分享其他案例,欢迎大家关注博主。

如果有问题可以在评论区里讨论,提问前请先点赞支持一下博主哦,如您想要探讨更多关于LabVIEW与人工智能技术,欢迎点击下方卡片,加入我们的技术交流群:705637299,进群请备注:上海仪酷

**如果文章对你有帮助,欢迎关注、点赞、收藏

使用LabVIEW 实现物体识别、图像分割、文字识别、人脸识别等深度视觉的更多相关文章

  1. 百度人脸识别api及face++人脸识别api测试(python)

    一.百度人脸识别服务 1.官方网址:http://apistore.baidu.com/apiworks/servicedetail/464.html 2.提供的接口包括: 2.1 多人脸比对:请求多 ...

  2. Android打开相机进行人脸识别,使用虹软人脸识别引擎

    上一张效果图,渣画质,能看就好 功能说明: 人脸识别使用的是虹软的FreeSDK,包含人脸追踪,人脸检测,人脸识别,年龄.性别检测功能,其中本demo只使用了FT和FR(人脸追踪和人脸识别),封装了开 ...

  3. opencv实现人脸识别(四) 人脸识别模块

    到这一步就是进行人脸识别了. 流程图: 代码: import cv2 def recognize(cam): recognizer = cv2.face.LBPHFaceRecognizer_crea ...

  4. OCR场景文本识别:文字检测+文字识别

    一. 应用背景 OCR(Optical Character Recognition)文字识别技术的应用领域主要包括:证件识别.车牌识别.智慧医疗.pdf文档转换为Word.拍照识别.截图识别.网络图片 ...

  5. Python的开源人脸识别库:离线识别率高达99.38%

    Python的开源人脸识别库:离线识别率高达99.38%   github源码:https://github.com/ageitgey/face_recognition#face-recognitio ...

  6. Python的开源人脸识别库:离线识别率高达99.38%(附源码)

    Python的开源人脸识别库:离线识别率高达99.38%(附源码) 转https://cloud.tencent.com/developer/article/1359073   11.11 智慧上云 ...

  7. 3D动态人脸识别技术分析——世纪晟人脸识别实现三维人脸建模

    - 目录 - 国内3D动态人脸识别现状概况 - 新形势下人脸识别技术发展潜力 - 基于深度学习的3D动态人脸识别技术分析 1. 非线性数据建模方法 2. 基于3D变形模型的人脸建模 - 案例结合——世 ...

  8. 安排上了!PC人脸识别登录,出乎意料的简单

    本文收录在个人博客:www.chengxy-nds.top,技术资源共享. 之前不是做了个开源项目嘛,在做完GitHub登录后,想着再显得有逼格一点,说要再加个人脸识别登录,就我这佛系的开发进度,过了 ...

  9. paper 50 :人脸识别简史与近期进展

    自动人脸识别的经典流程分为三个步骤:人脸检测.面部特征点定位(又称Face Alignment人脸对齐).特征提取与分类器设计.一般而言,狭义的人脸识别指的是"特征提取+分类器"两 ...

  10. 基于PCA的人脸识别步骤

    代码下载:基于PCA(主成分分析)的人脸识别 人脸识别是一个有监督学习过程,首先利用训练集构造一个人脸模型,然后将测试集与训练集进行匹配,找到与之对应的训练集头像.最容易的方式是直接利用欧式距离计算测 ...

随机推荐

  1. node可以用nvm快速切换版本,golang如何快速切换版本?用gvm就行。

    使用 gvm 可以带来以下好处: 快速切换 Golang 版本,方便进行版本测试和开发: 可以在多个项目中同时使用不同版本的 Golang 包和工具,避免冲突: 可以通过 gvm 管理不同版本的 Go ...

  2. 2022-12-15:寻找用户推荐人。写一个查询语句,返回一个客户列表,列表中客户的推荐人的编号都 不是 2。 对于示例数据,结果为: +------+ | name | +------+ | Wil

    2022-12-15:寻找用户推荐人.写一个查询语句,返回一个客户列表,列表中客户的推荐人的编号都 不是 2. 对于示例数据,结果为: ±-----+ | name | ±-----+ | Will ...

  3. 2022-08-21:以下go语言代码输出什么?A:0;B:panic;C:不知道。 package main var n = -99 func main() { m := make(map[

    2022-08-21:以下go语言代码输出什么?A:0:B:panic:C:不知道. package main var n = -99 func main() { m := make(map[stri ...

  4. 2021-08-28:给定一个正数数组arr,长度一定大于6(>=7),一定要选3个数字做分割点,从而分出4个部分,并且每部分都有数,分割点的数字直接删除,不属于任何4个部分中的任何一个。 返回有没有

    2021-08-28:给定一个正数数组arr,长度一定大于6(>=7),一定要选3个数字做分割点,从而分出4个部分,并且每部分都有数,分割点的数字直接删除,不属于任何4个部分中的任何一个. 返回 ...

  5. 2021-11-08:扁平化嵌套列表迭代器。给你一个嵌套的整数列表 nestedList 。每个元素要么是一个整数,要么是一个列表;该列表的元素也可能是整数或者是其他列表。请你实现一个迭代器将其扁平化

    2021-11-08:扁平化嵌套列表迭代器.给你一个嵌套的整数列表 nestedList .每个元素要么是一个整数,要么是一个列表:该列表的元素也可能是整数或者是其他列表.请你实现一个迭代器将其扁平化 ...

  6. More than one file was found with OS independent path 'lib/armeabi-v7a/libflutter.so'

    今日一个flutter 整合ai到原生android 时老是提示如下错误 Caused by: com.android.builder.merge.DuplicateRelativeFileExcep ...

  7. 瞄准程序员招聘痛点,ShowMeBug让面试代码操作可“回放”

    程序员虽然是建设互联网的职业之一,但他们的招聘工作的线上化却有不少难题. 疫情加速了市场对远程办公.远程面试.远程教学等模式的接受程度,但程序员招聘涉及到代码能力测试,甚至不同企业有不同的产品代码基础 ...

  8. 使用 conda 和 Jupyter 创建你的自定义 R 包,转换笔记为幻灯片

    创建你的自定义 R 包 出于用户使用方便考虑,Anaconda 已经在 "R Essentials" 中打包了一些最常用的数据科学 R 包.使用 conda metapackage ...

  9. 10.1. Java性能调优

    Java性能调优是一个复杂且重要的主题,它涉及到了JVM.垃圾收集器.内存管理.多线程.代码优化等多个方面.在本节中,我们将对Java性能调优的基本概念和方法进行简要介绍. 10.1.1. 理解性能指 ...

  10. 互动无极限:在线免费ChatGPT聊天工具-gpt4

    在现代社会中,聊天交流已变得越来越普遍,并且不断发展成新的形式和类型.而如今,通过使用人工智能技术,我们可以更加便捷地进行自然的对话交流.那么,提供在线免费使用的ChatGPT聊天工具是否可以满足各种 ...