文章链接:

基于GPT搭建私有知识库聊天机器人(一)实现原理

基于GPT搭建私有知识库聊天机器人(二)环境安装

基于GPT搭建私有知识库聊天机器人(三)向量数据训练

基于GPT搭建私有知识库聊天机器人(四)问答实现


OpenAI在6月13日发布了几个重磅更新,其中包括:

  1. 开放了16k上下文的GPT-3.5-Turbo模型gpt-3.5-turbo-16k,这是目前模型容量的4倍。
  2. 发布了新的GPT-4和GPT-3.5-Turbo模型。
  3. Chat Completions API中新增了函数调用功能,使得实时获取网络数据成为可能。
  4. embeddings模型的成本降低了75%。
  5. gpt-3.5-turbo的输入token成本也降低了25%。

本文将重点介绍Chat Completions API新增的函数调用功能。

1、流程和原理

函数调用功能的流程如下:

  1. 用户发起问题。
  2. 服务端说明函数作用、参数提取规则
  3. OpenAI根据规则说明提取参数,并返回给服务端。
  4. 服务端调用本地函数获取结果。
  5. 结果返回给OpenAI。
  6. OpenAI归纳总结后生成答案并返回给用户。

通过这种方式,我们可以在聊天机器人中使用函数调用来实现更加灵活和复杂的业务功能。

2、功能演示

在这里,我们可以展示函数调用功能的一些应用场景,例如从外部API获取实时数据、执行计算任务、进行数据库操作等。这些功能可以根据具体需求进行定制,使聊天机器人能够更好地满足用户的需求。

我这里展示一个通过微信公众号查询汽车票班次的功能:

下面是日志数据:首先是从问题中提取出参数,然后调用本地接口获取班次信息,openai归纳总结后输出答案。

> Entering new  chain...

Invoking: `query_bus_by_date` with `{'drv_date': '2023-07-14', 'start_name': '成都', 'target_name': '稻城'}`

[{'boardingAddress': '', 'boardingCode': '', 'boardingName': '', 'busNo': '川A88888', 'busTypeName': '大型高一', 'childSAmount': '500', 'displayExtraFlag': '', 'drvTime': '2023-07-14 20:00', 'endName': '亚丁', 'extraFlag': '0', 'fullPrice': '0.02', 'halfPrice': '130.00', 'isForbid': '0', 'isPassStation': '1', 'isRealNameLine': '1', 'mile': '100', 'motName': 'XXXX', 'passId': '6', 'refundTimeLimit': '', 'schId': '5JhYm', 'schTypeId': '1', 'scheduleType': '1', 'seatAmount': '4998', 'seatTypeName': '', 'signId': 'v21ofWkSTmttd8mVuwxZKL5p', 'startCityName': '成都', 'startCityNo': '510100', 'startDrvTime': '', 'startStationName': '城北客运站', 'startStationNo': 'cbcz', 'stationGuidePrice': '', 'stopAddress': '', 'stopCode': '', 'stopName': '稻城', 'stopTime': '', 'targetCityName': '', 'targetCityNo': '', 'targetStationName': '', 'targetStationNo': '', 'useMinutes': ''}, {'boardingAddress': '', 'boardingCode': '', 'boardingName': '', 'busNo': '川A88888', 'busTypeName': '大型高一', 'childSAmount': '4', 'displayExtraFlag': '', 'drvTime': '2023-07-14 07:30', 'endName': '亚丁', 'extraFlag': '0', 'fullPrice': '0.02', 'halfPrice': '130.00', 'isForbid': '0', 'isPassStation': '1', 'isRealNameLine': '1', 'mile': '100', 'motName': 'XXXXX', 'passId': '6', 'refundTimeLimit': '', 'schId': 'fPDLG', 'schTypeId': '0', 'scheduleType': '1', 'seatAmount': '42', 'seatTypeName': '', 'signId': 'mVpTnMHS7i9ZEQxl9JddzkI4', 'startCityName': '成都', 'startCityNo': '510100', 'startDrvTime': '', 'startStationName': '城北客运站', 'startStationNo': 'cbcz', 'stationGuidePrice': '', 'stopAddress': '', 'stopCode': '', 'stopName': '稻城', 'stopTime': '', 'targetCityName': '', 'targetCityNo': '', 'targetStationName': '', 'targetStationNo': '', 'useMinutes': ''}]

根据查询结果,我找到了两个班次可供选择:

1. 班次号:川A88888,车型:大型高一,出发时间:2023-07-14 20:00,起点:成都城北客运站,终点:稻城亚丁。全票价格为0.02元,半票价格为130.00元。该班次由XXXX运营,共有4998个座位。

2. 班次号:川A88888,车型:大型高一,出发时间:2023-07-14 07:30,起点:成都城北客运站,终点:稻城亚丁。全票价格为0.02元,半票价格为130.00元。该班次由XXXX运营,共有42个座位。

请问您对以上两个班次有什么要求或者偏好吗?

> Finished chain.

3、代码示例

以下代码依旧使用langchain提供的tools实现,读者也可以使用openAI提供的SDK实现。

from langchain.tools import BaseTool
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
from langchain.tools import format_tool_to_openai_function
from langchain.agents import AgentType, initialize_agent
from pydantic import BaseModel, Field
from typing import Optional, Type
from datetime import date
import requests
import json
import os llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613") #注意这里要用gpt-3.5-turbo-0613模型才能支持函数调用 # 定义入参解析规则
class ScheduleCheckInput(BaseModel):
drv_date: str = Field(..., description="日期,请格式化为yyyy-mm-dd,日期当天从%s开始计算" % date.today())
start_name: str = Field(..., description="起点")
target_name: str = Field(..., description="终点") class BusTool(BaseTool):
name = "query_bus_by_date"
description = "根据日期查询起止点的班次信息" def _run(self, drv_date, start_name, target_name):
url = "http://test.test.com/"
data = {"body": {
"startName": "%s",
"targetNo": "%s",
"drvTime": "%s"}
}
json_data = json.dumps(data) % (start_name, target_name, drv_date)
response = requests.post(url, data=json_data.encode("utf-8"))
return response.json().get("body").get("data") def _arun(self):
raise NotImplementedError("This tool does not support async1") args_schema: Optional[Type[BaseModel]] = ScheduleCheckInput def search_schedule(query: str) -> str:
bus_tools = [BusTool()]
open_ai_agent = initialize_agent(bus_tools,
llm,
agent=AgentType.OPENAI_FUNCTIONS,
verbose=True)
return open_ai_agent.run(query) if __name__ == '__main__':
search_schedule("请帮我查询13号成都到绵阳的班次信息")

总结

本文介绍了OpenAI在6月13日发布的重磅更新中,新增的Chat Completions API函数调用功能。通过函数调用,我们可以在聊天机器人中实现更加灵活和复杂的功能,例如从外部API获取实时数据、执行计算任务等。我们还提供了一个简单的代码示例,演示了如何使用函数调用功能。这些更新为构建强大的私有知识库聊天机器人提供了更多的可能性。

基于GPT搭建私有知识库聊天机器人(五)函数调用的更多相关文章

  1. 计算机网络课设之基于UDP协议的简易聊天机器人

    前言:2017年6月份计算机网络的课设任务,在同学的帮助和自学下基本搞懂了,基于UDP协议的基本聊天的实现方法.实现起来很简单,原理也很简单,主要是由于老师必须要求使用C语言来写,所以特别麻烦,而且C ...

  2. ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档]

    ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档] 简介 简单地说就是该有的都有了,但是总体跑起来效果还不好. 还在开发中,它工作的效果还不好.但是你可以直 ...

  3. 版本控制系统之基于httpd搭建私有git仓库

    在上一篇博客中,我们主要聊到了git的基本工作原理和一些常用的git命令的使用:回顾请参考https://www.cnblogs.com/qiuhom-1874/p/13787701.html:今天我 ...

  4. 花了半个小时基于 ChatGPT 搭建了一个微信机器人

    相信大家最近被 ChatGPT 刷屏了,其实在差不多一个月前就火过一次,不会那会好像只在程序员的圈子里面火起来了,并没有被大众认知到,不知道最近是因为什么又火起来了,而且这次搞的人尽皆知. 想着这么火 ...

  5. 基于docer搭建私有gitlab服务器

    今天闲着无聊,于是乎想用最近很流行的docker容器搭建一个自己的gitlab的服务器,关于docker和gitlab就不多介绍了,网上查了很多资料,貌似没有一个统一的方法,很乱很杂,而且很容易误导人 ...

  6. 微信智能机器人助手,基于hook技术,自动聊天机器人

    下载地址: 链接:https://pan.baidu.com/s/1N5uQ3gaG2IZu7f6EGUmBxA 提取码:md7z 复制这段内容后打开百度网盘手机App,操作更方便哦 微信智能助手说明 ...

  7. 基于CentOS搭建私有云服务

    系统版本:CentOS 7.2 64 位操作系统 部署 XAMPP 服务 下载 XAMPP(XAMPP 是个集成了多个组件的开发环境,包括 Apache + MariaDB + PHP + Perl. ...

  8. 基于Docker搭建大数据集群(五)Mlsql部署

    主要内容 mlsql部署 前提 zookeeper正常使用 spark正常使用 hadoop正常使用 安装包 微云下载 | tar包目录下 mlsql-cluster-2.4_2.11-1.4.0.t ...

  9. 智能聊天机器人——基于RASA搭建

    前言: 最近了解了一下Rasa,阅读了一下官方文档,初步搭建了一个聊天机器人. 官方文档:https://rasa.com/docs/ 搭建的chatbot项目地址: https://github.c ...

  10. 0基础搭建基于OpenAI的ChatGPT钉钉聊天机器人

    前言:以下文章来源于我去年写的个人公众号.最近chatgpt又开始流行,顺便把原文内容发到博客园上遛一遛. 注意事项和指引: 注册openai账号,需要有梯子进行访问,最好是欧美国家的IP,亚洲国家容 ...

随机推荐

  1. MySQL(十一)索引的分类和创建原则

    索引的创建与设计原则 1 索引的声明与使用 1.1 索引的分类 ​ MySQL索引包括普通索引.唯一性索引.全文索引.单列索引.多列索引和空间索引 按照逻辑结构划分,主要有四种:普通索引.唯一性索引. ...

  2. 以SQLserver为例的Dapper详细讲解

    Dapper是一种轻量级的ORM(对象关系映射)工具,它提供了高效且易于使用的方式来执行数据库操作.Dapper是由Stack Overflow团队开发并维护的,它的主要目标是提供比EF更快.更直接的 ...

  3. [aac @ 0x1dd24c0] Input contains NaN/+-Inf

    ffmpeg编码pcm为aac时报错:[aac @ 0x1dd24c0] Input contains NaN/+-Inf 在./configure选项后面加上下列选项就可以 --enable-enc ...

  4. [Pytorch框架] 3.3 通过Sin预测Cos

    文章目录 3.3 通过Sin预测Cos 3.3 通过Sin预测Cos %matplotlib inline import torch import torch.nn as nn from torch. ...

  5. P5356 [Ynoi2017] 由乃打扑克

    md调了5h才调出来恶心坏了没想到这么快就做了第二道Ynoi 据说这题其实不卡常 屠龙宝刀点击就送 题面也很清楚,给定两种操作,一种是区间加,一种是询问区间内第 k 小的数的值是多少. 对于区间加,在 ...

  6. 2023-05-06:X轴上有一些机器人和工厂。给你一个整数数组robot,其中robot[i]是第i个机器人的位置 再给你一个二维整数数组factory,其中 factory[j] = [posit

    2023-05-06:X轴上有一些机器人和工厂.给你一个整数数组robot,其中robot[i]是第i个机器人的位置 再给你一个二维整数数组factory,其中 factory[j] = [posit ...

  7. 读《图解HTTP》

    最近读了一本书<图解HTTP>,读完后在大体上对HTTP协议有了更深层次的了解.以下是我以前不懂的问题,通过阅读此书后,这些问题都有了答案: 问题: URI和URL的区别? cookie到 ...

  8. 【已解决】使用代理后,登陆微软账号提示0x800190001

    今天晚上想要登录Onedrive同步文件时,发现怎么都登陆不上去,报出的错误代码是0x80190001,在网上搜索了各种方法,重置网络,重置Onedrive都没什么用,甚至把Onedrive重装了一遍 ...

  9. 推荐一个.Ner Core开发的配置中心开源项目

    当你把单体应用改造为微服务架构,相应的配置文件,也会被分割,被分散到各个节点.这个时候就会产生一个问题,配置信息是分散的.冗余的,变成不好维护管理.这个时候我们就需要把配置信息独立出来,成立一个配置中 ...

  10. 2022-04-27:Alice 有一个下标从 0 开始的数组 arr ,由 n 个正整数组成。她会选择一个任意的 正整数 k 并按下述方式创建两个下标从 0 开始的新整数数组 lower 和 hig

    2022-04-27:Alice 有一个下标从 0 开始的数组 arr ,由 n 个正整数组成.她会选择一个任意的 正整数 k 并按下述方式创建两个下标从 0 开始的新整数数组 lower 和 hig ...