Machine Learning | Coursera

GitHub地址:https://github.com/hanlulu1998/Coursera-Machine-Learning

Machine Learning(机器学习)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演译。在过去的十年中,机器学习帮助我们自动驾驶汽车,有效的语音识别,有效的网络搜索,并极大地提高了人类基因组的认识。机器学习是当今非常普遍,你可能会使用这一天几十倍而不自知。很多研究者也认为这是最好的人工智能的取得方式。在本课中,您将学习最有效的机器学习技术,并获得实践,让它们为自己的工作。更重要的是,你会不仅得到理论基础的学习,而且获得那些需要快速和强大的应用技术解决问题的实用技术。最后,你会学到一些硅谷利用机器学习和人工智能的最佳实践创新。

本课程提供了一个广泛的介绍机器学习、数据挖掘、统计模式识别的课程。主题包括:

(一)监督学习(参数/非参数算法,支持向量机,核函数,神经网络)。

(二)无监督学习(聚类,降维,推荐系统,深入学习推荐)。

(三)在机器学习的最佳实践(偏差/方差理论;在机器学习和人工智能创新过程)。本课程还将使用大量的案例研究,您还将学习如何运用学习算法构建智能机器人(感知,控制),文本的理解(Web搜索,反垃圾邮件),计算机视觉,医疗信息,音频,数据挖掘,和其他领域。

中文视频地址:https://www.bilibili.com/video/BV164411b7dx/

课程地址:https://www.coursera.org/course/ml

编程内容

Programming Exercise 1: Linear Regression

在整个练习中,您将使用脚本ex1.m和ex1multi.m。这些脚本为问题设置数据集,并调用您将编写的函数。您不需要修改它们中的任何一个。您只需按照本作业中的说明修改其他文件中的函数。对于本编程练习,您只需完成练习的第一部分,即可使用一个变量实现线性回归。练习的第二部分是可选的,涵盖了多变量的线性回归。

Programming Exercise 2: Logistic Regression

在这部分练习中,您将构建逻辑回归模型来预测学生是否被大学录取。假设您是一所大学系的管理员,您想根据每个申请者在两次考试中的成绩来确定他们被录取的机会。您拥有以前申请者的历史数据,可以将其用作逻辑回归的培训集。对于每个培训示例,您都有申请者在两次考试中的分数和录取决定。你的任务是建立一个分类模型,根据这两次考试的分数来估计申请者的录取概率。

Programming Exercise 3:Multi-class Classification and Neural Networks

在本练习中,您将实现一对一逻辑回归和神经网络来识别手写数字。

Programming Exercise 4:Neural Networks Learning

在本练习中,您将实现神经网络的反向传播算法,并将其应用于手写数字识别任务。

Programming Exercise 5:Regularized Linear Regression and Bias v.s. Variance

在本练习中,您将实现正则化线性回归,并使用它来研究具有不同偏差-方差属性的模型。

Programming Exercise 6:Support Vector Machines

在本练习中,您将使用支持向量机(SVM)构建垃圾邮件分类器。

Programming Exercise 7:K-means Clustering and Principal Component Analysis

在本练习中,您将实现K-Means聚类算法并将其应用于压缩图像。

Programming Exercise 8:Anomaly Detection and Recommender Systems

在本练习中,您将实现异常检测算法,并将其应用于检测网络上的故障服务器。

Code说明

每个项目中提供两种版本,分别是Matla/Octave版本和Python版本,原始的课程代码是Octave版本的,Python版本是我自己改写的,水平有限,多多包涵。

Machine Learning | Coursera 课后代码的更多相关文章

  1. 【机器学习实战】Machine Learning in Action 代码 视频 项目案例

    MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apa ...

  2. Andrew Ng Machine Learning Coursera学习笔记

    课程记录笔记如下: 1.目前ML的应用 包括:数据挖掘database mining.邮件过滤email anti-spam.机器人autonomous robotics.计算生物学computati ...

  3. Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)

    Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...

  4. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  5. Coursera《machine learning》--(14)数据降维

    本笔记为Coursera在线课程<Machine Learning>中的数据降维章节的笔记. 十四.降维 (Dimensionality Reduction) 14.1 动机一:数据压缩 ...

  6. Coursera《machine learning》--(8)神经网络表述

    本笔记为Coursera在线课程<Machine Learning>中的神经网络章节的笔记. 八.神经网络:表述(Neural Networks: Representation) 本节主要 ...

  7. Coursera《machine learning》--(2)单变量线性回归(Linear Regression with One Variable)

    本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation ...

  8. 機器學習基石(Machine Learning Foundations) 机器学习基石 课后习题链接汇总

    大家好,我是Mac Jiang,非常高兴您能在百忙之中阅读我的博客!这个专题我主要讲的是Coursera-台湾大学-機器學習基石(Machine Learning Foundations)的课后习题解 ...

  9. Machine Learning - Andrew Ng - Coursera

    Machine Learning - Andrew Ng - Coursera Contents 1 Notes 1 Notes What is Machine Learning? Two defin ...

  10. 学习笔记之Machine Learning by Andrew Ng | Stanford University | Coursera

    Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machin ...

随机推荐

  1. Java 获取当前天是一年中的第几天

    Java 获取当前天是一年中的第几天 @Test void dayofweed() throws Exception { System.out.println("2023-01-01 第 & ...

  2. SecureCRT 取消右击粘贴功能

    SecureCRT 默认是选择复制.右击粘贴 但右击粘贴这个功能实在是太方便了,有时候会造成不必要的麻烦.所以一般情况下我是取消这个应用的 设置如下图所示,把勾取消就OK了

  3. Windows 2016 安装 Docker

    打开 PowerShell Windows PowerShell 版权所有 (C) 2016 Microsoft Corporation.保留所有权利. PS C:\Users\Administrat ...

  4. PS组件相关BAPI

    一.新增组件BAPI "-----------------------------------------@斌将军-------------------------------------- ...

  5. Codeforces 144A Arrival of the General (水)

    A Ministry for Defense sent a general to inspect the Super Secret Military Squad under the command o ...

  6. 电缆厂 3D 可视化管控系统 | 图扑数字孪生

    近年来,我国各类器材制造业已经开始向数字化生产转型,使得生产流程变得更加精准高效.通过应用智能设备.物联网和大数据分析等技术,企业可以更好地监控生产线上的运行和质量情况,及时发现和解决问题,从而提高生 ...

  7. java bean和String之间相互转化

    开发中有的表字段特别多,在数据传递过程中要写很多类似实体类的get.set方法把字符串型的数据放到对象里然后,在做存储之类的操作,如果实体的字段少不会觉得多麻烦,但是字段如果有几十个或者更多那么这种简 ...

  8. lin UI微信小程序组件库

    https://doc.mini.talelin.com/start/ 所在文件夹,npm init 安装组件库, npm i lin-ui@0.8.7 选择"工具-构建npm".

  9. Qt开发-共享内存使用范例,配合开发者密钥使用后台调试程序或者进入调试模式

    共享内存 就之前不是开发了一个Leventure_DeveloperKey用以调试程序嘛,在这里简单聊一下调试模式的方案. 这里的调试分为了两种,一种是调试模式,一种是开发者模式.需要这两种模式的原因 ...

  10. 解决pyintstaller 打包后程序报错 api-ms-win-core-path-l1-1-0.dll文件

    一.错误现象 1.api-ms-win-core-path-l1-1-0.dll错误日志如下: 2.重新打包查看有如下的警告信息: 二.解决方案: 1.网上下载:api-ms-win-core-pat ...