一、torch.nn.Sequential代码栗子

官方文档:Sequential — PyTorch 2.0 documentation

# Using Sequential to create a small model. When `model` is run,
# input will first be passed to `Conv2d(1,20,5)`. The output of
# `Conv2d(1,20,5)` will be used as the input to the first
# `ReLU`; the output of the first `ReLU` will become the input
# for `Conv2d(20,64,5)`. Finally, the output of
# `Conv2d(20,64,5)` will be used as input to the second `ReLU`
model = nn.Sequential(
nn.Conv2d(1,20,5),
nn.ReLU(),
nn.Conv2d(20,64,5),
nn.ReLU()
)
  • 在第一个变量名model中,依次执行nn.Convd2d(1,20,5)nn.ReLU()nn.Conv2d(20,64,5)nn.ReLU()四个函数。这样写起来的好处是使代码更简洁

  • 由此可见,函数\(Sequential\)的主要作用为依次执行括号内的函数

二、神经网络搭建实战

采用\(CIFAR10\)中的数据,并对其进行简单的分类。以下图为例:

  • 输入:3通道,32×32 → 经过一个5×5的卷积 → 变成32通道,32×32的图像 → 经过2×2的最大池化 → 变成32通道,16×16的图像.... → ... → 变成64通道,4×4的图像 → 把图像展平(Flatten)→ 变成64通道,1×1024 (64×4×4) 的图像 → 通过两个线性层,最后\(out\_feature=10\) → 得到最终图像

以上,就是CIFAR10模型的结构。本节的代码也基于CIFAR10 model的结构构建。

1. 神经网络中的参数设计及计算

(1)卷积层的参数设计(以第一个卷积层conv1为例)

  • 输入图像为3通道,输出图像为32通道,故:\(in\_channels=3\);\(out\_channels=32\)

  • 卷积核尺寸为\(5×5\)

  • 图像经过卷积层conv1前后的尺寸均为32×32,根据公式:

    \[H_{out}​=⌊\frac{H_{in}​+2×padding[0]−dilation[0]×(kernel\_size[0]−1)−1​}{stride[0]}+1⌋
    \]
    \[W_{out}​=⌊\frac{W_{in}​+2×padding[1]−dilation[1]×(kernel\_size[1]−1)−1​}{stride[1]}+1⌋
    \]

    可得:

    \[H_{out}​=⌊\frac{32​+2×padding[0]−1×(5−1)−1​}{stride[0]}+1⌋=32
    \]
    \[W_{out}​=⌊\frac{32​+2×padding[1]−1×(5−1)−1​}{stride[1]}+1⌋=32
    \]

    即:

    \[\frac{27+2×padding[0]​}{stride[0]}=31
    \]
    \[\frac{27+2×padding[1]​}{stride[1]}=31
    \]

    若\(stride[0]\)或\(stride[1]\)设置为2,那么上面的\(padding\)也会随之扩展为一个很大的数,这很不合理。所以这里设置:\(stride[0]=stride[1]=1\),由此可得:\(padding[0]=padding[1]=2\)

其余卷积层的参数设计及计算方法均同上

(2)最大池化操作的参数设计(以第一个池化操作maxpool1为例)

  • 由图可得,\(kennel\_size=2\)

其余最大池化参数设计方法均同上

(3)线性层的参数设计

  • 通过三次卷积和最大池化操作后,图像尺寸变为64通道4×4。之后使用\(Flatten()\)函数将图像展成一列,此时图像尺寸变为:1×(64×4×4),即\(1×1024\)

  • 因此,之后通过第一个线性层,\(in\_features=1024\),\(out\_features=64\)

  • 通过第二个线性层,\(in\_features=64\),\(out\_features=10\)

2. 构建神经网络实战

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear class Demo(nn.Module):
def __init__(self):
super(Demo,self).__init__() # 搭建第一个卷积层:in_channels=3,out_channels=32,卷积核尺寸为5×5,通过计算得出:padding=2;stride默认情况下为1,不用设置
self.conv1=Conv2d(3,32,5,padding=2) # 第一个最大池化操作,kennel_size=2
self.maxpool1=MaxPool2d(2) # 第二个卷积层及最大池化操作
self.conv2=Conv2d(32,32,5,padding=2)
self.maxpool2=MaxPool2d(2) # 第三个卷积层及最大池化操作
self.conv3=Conv2d(32,64,5,padding=2)
self.maxpool3=MaxPool2d(2) # 展开图像
self.flatten=Flatten() # 线性层参数设计
self.linear1=Linear(1024,64)
self.linear2=Linear(64,10) # 如果是预测概率,那么取输出结果的最大值(它代表了最大概率) def forward(self,x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.linear1(x) #如果线性层的1024和64不会计算,可以在self.flatten之后print(x.shape)查看尺寸,以此设定linear的参数
x = self.linear2(x)
return x demo=Demo()
print(demo)
"""
[Run]
Demo(
(conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear1): Linear(in_features=1024, out_features=64, bias=True)
(linear2): Linear(in_features=64, out_features=10, bias=True)
) 可以看出,网络还是有模有样的
""" #构建输入,测试神经网络
input=torch.ones((64,3,32,32)) #构建图像,batch_size=64,3通道,32×32
output=demo(input)
print(output.shape) #[Run] torch.Size([64, 10])

这里的\(forward\)函数写的有点烦,这时候\(Sequential\)函数的优越就体现出来了(墨镜黄豆)。下面是\(class\) \(Demo\)优化后的代码:

class Demo(nn.Module):
def __init__(self):
super(Demo,self).__init__() self.model1=Sequential(
Conv2d(3,32,5,padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
) def forward(self,x):
x=self.model1(x)
return x

极简主义者看过后表示很满意ε٩(๑> ₃ <)۶з

3. 可视化神经网络

from torch.utils.tensorboard import SummaryWriter
writer=SummaryWriter("logs_seq")
writer.add_graph(demo,input)
writer.close()

这样就可以清晰地看到神经网络的相关参数啦

深度学习(十二)——神经网络:搭建小实战和Sequential的使用的更多相关文章

  1. 深度学习(二十六)Network In Network学习笔记

    深度学习(二十六)Network In Network学习笔记 Network In Network学习笔记 原文地址:http://blog.csdn.net/hjimce/article/deta ...

  2. 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明 ...

  3. 对比深度学习十大框架:TensorFlow 并非最好?

    http://www.oschina.net/news/80593/deep-learning-frameworks-a-review-before-finishing-2016 TensorFlow ...

  4. 深度学习之卷积神经网络CNN及tensorflow代码实例

    深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...

  5. 推荐系统遇上深度学习(十)--GBDT+LR融合方案实战

    推荐系统遇上深度学习(十)--GBDT+LR融合方案实战 0.8012018.05.19 16:17:18字数 2068阅读 22568 推荐系统遇上深度学习系列:推荐系统遇上深度学习(一)--FM模 ...

  6. 【神经网络与深度学习】卷积神经网络(CNN)

    [神经网络与深度学习]卷积神经网络(CNN) 标签:[神经网络与深度学习] 实际上前面已经发布过一次,但是这次重新复习了一下,决定再发博一次. 说明:以后的总结,还应该以我的认识进行总结,这样比较符合 ...

  7. 深度学习(二)--深度信念网络(DBN)

    深度学习(二)--深度信念网络(Deep Belief Network,DBN) 一.受限玻尔兹曼机(Restricted Boltzmann Machine,RBM) 在介绍深度信念网络之前需要先了 ...

  8. 语义分割:基于openCV和深度学习(二)

    语义分割:基于openCV和深度学习(二) Semantic segmentation in images with OpenCV 开始吧-打开segment.py归档并插入以下代码: Semanti ...

  9. 深度学习之卷积神经网络(CNN)的应用-验证码的生成与识别

    验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制 ...

  10. 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别

    深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...

随机推荐

  1. 【设计模式】使用 go 语言实现简单工厂模式

    最近在看<大话设计模式>,这本书通过对话形式讲解设计模式的使用场景,有兴趣的可以去看一下. 第一篇讲的是简单工厂模式,要求输入两个数和运算符号,得到运行结果. 这个需求不难,难就难在类要怎 ...

  2. 【使用git之旅】

    前言 在学习各种语言的时候我总喜欢把例子改成有自己想法并且有趣的程序, 但是时间一长,我发现在本地管理很麻烦,于是乎想到了github和gitee, 然后昨晚一时兴起,就开始了学习,开个博客记录一下我 ...

  3. 第十三届蓝桥杯c++b组国赛题解(还在持续更新中...)

    试题A:2022 解题思路: 有2022个物品,它们的编号分别是1到2022,它们的价值分别等于它们的编号.也就是说,有2022种物品,物品价值等于物品编号. 从2022个物品种选取10个物品,满足1 ...

  4. remote: HTTP Basic:Access denied fatal:Authentication failed for

    近来在一天新电脑上面使用git pull 一个项目,老是提示 Access denied, 找了许多方法,ssh key这些都配置了还是不行,当时别提有多尬 看嘛这就是pull 时的提示 // *** ...

  5. 推荐一个日历转换开源工具库,支持C#、Java、PHP等主流的语言

    日历对我们来说,最熟悉的就是阳历和农历,在中国每年都有固定的节日.节气.中国特有传统节日,有些节日是固定的,但是节气这些都需要我们经过一定规则换算出来. 所以,今天给大家推荐一个开源库,它支持阳历.阴 ...

  6. pytorch的torch、torchvision、torchaudio版本对应关系

    torch与torchvision对应关系 torch与torchaudio对应关系

  7. 之江实验室: 如何基于 JuiceFS 为超异构算力集群构建存储层 ?

    今天,高性能计算结合人工智能技术正在推动科研创新.例如通过破解水稻基因密码推动作物育种从"试验选优"向"计算选优"发展,在医药领域快速分析分子与蛋白之间的相互作 ...

  8. 记录部署Datax、Datax-web 过程碰到的问题

    我的第一篇博客 datax在网络上部署的文档有很多,这里不重复阐述,只描述过程中碰到的些许问题,记录下来. 1. 1 ERROR RetryUtil - Exception when calling ...

  9. 前端vue echart自定义图表(柱形图 折线图 饼图 树形结构图 关系图谱 )

    快速实现echart自定义图表(柱形图 折线图 饼图 树形结构图 关系图谱 ); 下载完整代码请访问uni-app插件市场地址:https://ext.dcloud.net.cn/plugin?id= ...

  10. 检测手机系统是iOS还是android(可实现根据手机系统跳转App下载链接)

    快速实现检测手机系统是iOS还是android(可实现根据手机系统跳转App下载链接); 下载完整代码请访问uni-app插件市场地址:https://ext.dcloud.net.cn/plugin ...