[HAOI2006]均分数据

题解
今天下午刚学了模拟退火
借这个题来总结下模拟退火的要注意的问题吧
1 : \(eps\)不要设的太大
2 : 初温\(T\)在2000左右就差不多可以了
3 : 注意题目要求是要求最大值还是最小值,当x<0时\(exp(x)\)的取值范围才是\(0~1\)
4 : 可以在退完火以后再单独从当前最优答案下进行微调
5 : 可以进行多次退火
然后这题就是每次退火就是随机交换序列中的两个数,对序列DP一下就好了
题解
#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
const int M = 25 ;
const int N = 8 ;
const double INF = 1e50 ;
const double EPS = 1e-3 ;
using namespace std ;
int n , m ;
int val[M] , e[M] ;
double f[N][M] , p[M] , Sum[M] ;
double bax , Ans = INF ;
inline double Rand() {
return (double)((rand() % 101) / 100.0) ;
}
inline double F() {
for(int i = 0 ; i <= m ; i ++)
for(int j = 0 ; j <= n ; j ++) f[i][j] = INF ;
f[0][0] = 0 ;
for(int i = 1 ; i <= n ; i ++) Sum[i] = Sum[i - 1] + p[i] ;
for(int i = 1 ; i <= m ; i ++)
for(int j = i ; j <= n ; j ++)
for(int k = i - 1 ; k < j ; k ++)
f[i][j] = min(f[i][j] , f[i - 1][k] + (Sum[j] - Sum[k] - bax) * (Sum[j] - Sum[k] - bax)) ;
if(f[m][n] < Ans) {
Ans = f[m][n] ;
for(int i = 1 ; i <= n ; i ++) e[i] = p[i] ;
}
return f[m][n] ;
}
inline void Solve() {
for(int i = 1 ; i <= n ; i ++) p[i] = e[i] ;
double T = 2000 , W = 0.98 ;
double NowAns , PreAns , dlt ;
while(T > EPS) {
PreAns = F() ;
int a = rand() % n + 1 , b = rand() % n + 1 ;
while(a == b) b = rand() % n + 1 ;
swap(p[a], p[b]) ;
NowAns = F() ; dlt = NowAns - PreAns ;
if(exp(-dlt / T) > Rand()) ;
else swap(p[a] , p[b]) ;
T *= W ;
}
for(int i = 1 ; i <= 10000 ; i ++) {
int a = rand() % n + 1 , b = rand() % n + 1 ;
while(a == b) b = rand() % n + 1 ;
swap(p[a] , p[b]) ;
F() ;
swap(p[a] , p[b]) ;
}
}
int main() {
srand(time(0)) ;
cin >> n >> m ;
for(int i = 1 ; i <= n ; i ++) {
cin >> val[i] ;
bax += val[i] ;
p[i] = val[i] ;
}
bax /= m ; F() ;
int Times = 20 ; while(Times--) Solve() ;
printf("%.2lf\n",sqrt(Ans / m)) ;
return 0 ;
}
[HAOI2006]均分数据的更多相关文章
- bzoj2428: [HAOI2006]均分数据
模拟退火.挺好理解的.然后res打成了ans一直WA一直WA...!!!一定要注意嗷嗷嗷一定要注意嗷嗷嗷一定要注意嗷嗷嗷. 然后我就一直卡一直卡...发现最少1800次的时候就可以出解了.然后我就去调 ...
- P2503 [HAOI2006]均分数据
P2503 [HAOI2006]均分数据 模拟退火+dp (不得不说,我今天欧气爆棚) 随机出1个数列,然后跑一遍dp统计 #include<iostream> #include<c ...
- bzoj 2428: [HAOI2006]均分数据 随机化
2428: [HAOI2006]均分数据 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj2428 [HAOI2006]均分数据 模拟退火
[HAOI2006]均分数据 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3434 Solved: 1091[Submit][Status][Dis ...
- 洛谷 P2503 [HAOI2006]均分数据 随机化贪心
洛谷P2503 [HAOI2006]均分数据(随机化贪心) 现在来看这个题就是水题,但模拟赛时想了1个小时贪心,推了一堆结论,最后发现贪心做 不了, 又想了半个小时dp 发现dp好像也做不了,在随机化 ...
- 【BZOJ2428】[HAOI2006]均分数据
Description 已知N个正整数:A1.A2.…….An .今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小.均方差公式如下: ,其中σ为均方差,是各组数据和的平均值,xi为第 ...
- 洛谷P2503 [HAOI2006]均分数据(模拟退火)
题目描述 已知N个正整数:A1.A2.…….An .今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小.均方差公式如下: 输入输出格式 输入格式: 输入文件data.in包括: 第一行 ...
- BZOJ2428[HAOI2006]均分数据——模拟退火
题目描述 已知N个正整数:A1.A2.…….An .今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小.均方差公式如下: ,其中σ为均方差,是各组数据和的平均值,xi为第i组数据的数值 ...
- [luogu2503][HAOI2006]均分数据【模拟退火】
题目描述 已知N个正整数:A1.A2.--.An .今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小.均方差公式如下: 分析 模拟退火学习笔记:https://www.cnblogs ...
- BZOJ.2428.[HAOI2006]均分数据(随机化贪心/模拟退火)
题目链接 模拟退火: 模拟退火!每次随机一个位置加给sum[]最小的组. 参数真特么玄学啊..气的不想调了(其实就是想刷刷最优解) 如果用DP去算好像更准.. //832kb 428ms #inclu ...
随机推荐
- DRF JWT的用法 & Django的自定义认证类 & DRF 缓存
JWT 相关信息可参考: https://www.jianshu.com/p/576dbf44b2ae DRF JWT 的使用方法: 1. 安装 DRF JWT # pip install djang ...
- 本地配置nginx的https
前文:因为要用谷歌下的getUserMedia方法,而getUserMedia方法只能在https下才能调用,所以在本地搭建https来测试,现在说说步骤. 步骤1:下载nginx-1.10.3.zi ...
- 简谈Java传值传引用
本随笔旨在强化理解传值与传引用 如下代码的运行结果 其中i没有改变,s也没有改变. 但model中的值均改变了. i :100s :hellomodel :testchangemodel2 :ch ...
- java.lang.RuntimeException: JPedal Trial has now expired
具体提示: java.lang.RuntimeException: JPedal Trial has now expired jpedal-server-trial.jar jar包过期了,jpeda ...
- Android GIS开发系列-- 入门季(11) Callout气泡的显示
一.气泡的简单显示 首先我们要获取MapView中的气泡,通过MapView的getCallout()方法获取一个气泡.看一下Callout的简单介绍: 大体的意思是通过MapView获取Callou ...
- BIOS Setup
一般而言,普通的计算机系统应用不必关注BIOS的设置.但是如果涉及到主板集成声卡,网卡,或需要进行远程网络唤醒等操作时,必须在BIOS中设置相应参数才能使电脑正常工作.BIOS能对硬件设备进行初始 ...
- 一个Navi过程下多个DocumentCompleted事件问题的解决的方法
7.16 Marked to Write.... 七月份马克的一篇文章了,今天才想起来把他写完,呵呵. 原本是七月份用来做微博爬虫的,后来发现新浪对机器人的检測不好绕过,连简单地訪问都会被检測出来,后 ...
- react 项目实战(九)登录与身份认证
SPA的鉴权方式和传统的web应用不同:由于页面的渲染不再依赖服务端,与服务端的交互都通过接口来完成,而REASTful风格的接口提倡无状态(state less),通常不使用cookie和sessi ...
- Cracking the Coding Interview 150题(二)
3.栈与队列 3.1 描述如何只用一个数组来实现三个栈. 3.2 请设计一个栈,除pop与push方法,还支持min方法,可返回栈元素中的最小值.pop.push和min三个方法的时间复杂度必须为O( ...
- 【C语言】推断一个数是否为2的n次方
//推断一个数是否为2的n次方 #include <stdio.h> int is_two_n(int num) { if ((num&(num - 1))) //去掉一个1,推断 ...