bzoj3000 Big Number 数论,斯特林公式
Description
给你两个整数N和K,要求你输出N!的K进制的位数。
Input
有多组输入数据,每组输入数据各一行,每行两个数——N,K
Output
每行一个数为输出结果
Sample Input
2 5
2 10
10 10
100 200
Sample Output
1
1
7
69
对于100%的数据,有2≤N≤2^31, 2≤K≤200,数据组数T≤200。
题解
用Stirling公式求近似值
位数=logk(n!)+1
≈ logk(sqrt(2πn)*(n/e)^n)+1
= logk( sqrt(2πn))+log[(n/e)^n]+1
=1/2*logk( 2πn)+nlog(n/e)+1
=0.5*logk ( 2πn)+nlog(n/e)+1
=0.5*logk ( 2πn)+nlog(n)-nlog(e)+1
PS:pi=acos(-1.0),e=exp(1)
PS2:eps的存在是为了防止n=2,k=2这样刚好的情况出现,这个时候向上取整要多取1位
斯特林公式是求解n!的近似解,对于较大的n数值是十分准确的。

所以可以通过数学方法解决。
#include<cstring>
#include<cmath>
#include<iostream>
#include<cstdio>
#include<algorithm> #define ll long long
using namespace std;
const double eps=0.00000000001;
const double pai=3.14159265359;
const double e=exp(); int n,k; int main()
{
freopen("fzy.in","r",stdin);
freopen("fzy.out","w",stdout);
while(~scanf("%d%d",&n,&k))
{
if (n<=)
{
double ans=;
for (int i=;i<=n;i++)
ans+=log(i);
ans/=log(k);
int res=ceil(ans+eps);
printf("%d\n",res);
}
else
{
double res=(log(sqrt(*pai*n))+n*log(n/e))/log(k);
ll ans=ceil(res-eps);
printf("%lld\n",ans);
}
}
}
对了,c++小数处理的时候会有精度损失的问题,所以需要适当加上一个小数
bzoj3000 Big Number 数论,斯特林公式的更多相关文章
- [BZOJ3000]Big Number(斯特林公式)
求n!在k进制下的位数,n<=1e18 斯特林公式:$n!\approx \sqrt{2\pi n}(\frac{n}{e})^n$ 在n很大的时候有较好的精度保证. $\log_{k}n!+1 ...
- 【bzoj3000】Big Number 数论
题目描述 给你两个整数N和K,要求你输出N!的K进制的位数. 输入 有多组输入数据,每组输入数据各一行,每行两个数——N,K 输出 每行一个数为输出结果. 样例输入 2 5 2 10 10 10 10 ...
- hdu--1018--Big Number(斯特林公式)
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- Leetcode 263 Ugly Number 数论 类似质因数分解
Ugly Number的质因数仅为2,3,5 将输入的数分别除以2,3,5直到不能除,看是否为1,为1的是Ugly Number,其他则不是. class Solution { public: boo ...
- HDU 1018 Big Number【斯特林公式/log10 / N!】
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- BZOJ3000 Big Number
由Stirling公式: $$n! \approx \sqrt{2 \pi n} (\frac{n}{e})^n$$ 故:$$\begin{align} ans &= log_k n! + 1 ...
- [POJ3696]The Luckiest number(数论)
题目:http://poj.org/problem?id=3696 题意:给你一个数字L,你要求出一个数N,使得N是L的倍数,且N的每位数都必须是8,输出N的位数(如果不存在输出0) 分析: 首先我们 ...
- Leetcode 9 Palindrome Number 数论
判断一个数是否是回文数 方法是将数回转,看回转的数和原数是否相同 class Solution { public: bool isPalindrome(int x) { ) return false; ...
- [BZOJ3000] Big Number (Stirling公式)
Description 给你两个整数N和K,要求你输出N!的K进制的位数. Input 有多组输入数据,每组输入数据各一行,每行两个数——N,K Output 每行一个数为输出结果. Sample I ...
随机推荐
- Maven项目报错:Failed to execute goal org.apache.maven.plugins:maven-clean-plugin:2.5:clean (default-clea
[ERROR] Failed to execute goal org.apache.maven.plugins:maven-clean-plugin:2.5:clean (default-clean) ...
- Java的jdbc调用SQL Server存储过程Bug201906131120
如果要查询结果,第一行使用set nocount on;可能可以解决问题.
- CPP-基础:内存泄露及其检测工具
[转]浅谈C/C++内存泄露及其检测工具 对于一个c/c++程序员来说,内存泄漏是一个常见的也是令人头疼的问题.已经有许多技术被研究出来以应对这个问题,比如 Smart Pointer,Garba ...
- C语言特点_01
C语言特点: 1.C语言的32个关键字 auto 局部变量(自动储存) break 无条件退出程序最内层循环 case switch语句中选择项 char 单字节整型数据 const 定义不可更改的常 ...
- 牛客网NOIP赛前集训营-普及组(第二场)和 牛客网NOIP赛前集训营-提高组(第二场)解题报告
目录 牛客网NOIP赛前集训营-普及组(第二场) A 你好诶加币 B 最后一次 C 选择颜色 D 合法括号序列 牛客网NOIP赛前集训营-提高组(第二场) A 方差 B 分糖果 C 集合划分 牛客网N ...
- C语言获取Shell返回结果
Linux编程时候,如果我们需要调用shell命令或脚本通常使用system方法.如system("ls") 该方法返回值为0或-1,即成功或失败.而有的时候我们想要获取shell ...
- A Fast and Easy to Use AES Library
http://www.codeproject.com/Articles/57478/A-Fast-and-Easy-to-Use-AES-Library Introduction EfAesLib i ...
- 面试Python工程师,这几道编码题有必要背背,Python面试题No8
第1题:列表[1,2,3,4,5],请使用map()函数输出[1,4,9,16,25],并使用列表推导式提取出大于10的数,最终输出[16,25]. map是python高阶用法,字面意义是映射,它的 ...
- 数据结构( Pyhon 语言描述 ) — — 第7章:栈
栈概览 栈是线性集合,遵从后进先出原则( Last - in first - out , LIFO )原则 栈常用的操作包括压入( push ) 和弹出( pop ) 栈的应用 将中缀表达式转换为后缀 ...
- 简单几点让你快速了解python是什么
1.python是什么 python是一种广泛使用的高级编程语言,属于通用型编程语言,由吉多·范罗苏姆创造,第一版发布于1991年.可以视之为一种改良(加入一些其他编程语言的优点,如面向对象)的LIS ...