Description

给你两个整数N和K,要求你输出N!的K进制的位数。

Input

有多组输入数据,每组输入数据各一行,每行两个数——N,K

Output

每行一个数为输出结果

Sample Input

2 5
2 10
10 10
100 200

Sample Output

1
1
7
69
对于100%的数据,有2≤N≤2^31, 2≤K≤200,数据组数T≤200。

题解

用Stirling公式求近似值

位数=logk(n!)+1

≈ logk(sqrt(2πn)*(n/e)^n)+1

= logk( sqrt(2πn))+log[(n/e)^n]+1

=1/2*logk( 2πn)+nlog(n/e)+1

=0.5*logk ( 2πn)+nlog(n/e)+1

=0.5*logk ( 2πn)+nlog(n)-nlog(e)+1

PS:pi=acos(-1.0),e=exp(1)

PS2:eps的存在是为了防止n=2,k=2这样刚好的情况出现,这个时候向上取整要多取1位

斯特林公式是求解n!的近似解,对于较大的n数值是十分准确的。

所以可以通过数学方法解决。

 #include<cstring>
#include<cmath>
#include<iostream>
#include<cstdio>
#include<algorithm> #define ll long long
using namespace std;
const double eps=0.00000000001;
const double pai=3.14159265359;
const double e=exp(); int n,k; int main()
{
freopen("fzy.in","r",stdin);
freopen("fzy.out","w",stdout);
while(~scanf("%d%d",&n,&k))
{
if (n<=)
{
double ans=;
for (int i=;i<=n;i++)
ans+=log(i);
ans/=log(k);
int res=ceil(ans+eps);
printf("%d\n",res);
}
else
{
double res=(log(sqrt(*pai*n))+n*log(n/e))/log(k);
ll ans=ceil(res-eps);
printf("%lld\n",ans);
}
}
}

对了,c++小数处理的时候会有精度损失的问题,所以需要适当加上一个小数

bzoj3000 Big Number 数论,斯特林公式的更多相关文章

  1. [BZOJ3000]Big Number(斯特林公式)

    求n!在k进制下的位数,n<=1e18 斯特林公式:$n!\approx \sqrt{2\pi n}(\frac{n}{e})^n$ 在n很大的时候有较好的精度保证. $\log_{k}n!+1 ...

  2. 【bzoj3000】Big Number 数论

    题目描述 给你两个整数N和K,要求你输出N!的K进制的位数. 输入 有多组输入数据,每组输入数据各一行,每行两个数——N,K 输出 每行一个数为输出结果. 样例输入 2 5 2 10 10 10 10 ...

  3. hdu--1018--Big Number(斯特林公式)

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  4. Leetcode 263 Ugly Number 数论 类似质因数分解

    Ugly Number的质因数仅为2,3,5 将输入的数分别除以2,3,5直到不能除,看是否为1,为1的是Ugly Number,其他则不是. class Solution { public: boo ...

  5. HDU 1018 Big Number【斯特林公式/log10 / N!】

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  6. BZOJ3000 Big Number

    由Stirling公式: $$n! \approx \sqrt{2 \pi n} (\frac{n}{e})^n$$ 故:$$\begin{align} ans &= log_k n! + 1 ...

  7. [POJ3696]The Luckiest number(数论)

    题目:http://poj.org/problem?id=3696 题意:给你一个数字L,你要求出一个数N,使得N是L的倍数,且N的每位数都必须是8,输出N的位数(如果不存在输出0) 分析: 首先我们 ...

  8. Leetcode 9 Palindrome Number 数论

    判断一个数是否是回文数 方法是将数回转,看回转的数和原数是否相同 class Solution { public: bool isPalindrome(int x) { ) return false; ...

  9. [BZOJ3000] Big Number (Stirling公式)

    Description 给你两个整数N和K,要求你输出N!的K进制的位数. Input 有多组输入数据,每组输入数据各一行,每行两个数——N,K Output 每行一个数为输出结果. Sample I ...

随机推荐

  1. Flask应用运行流程

    当我们运行项目后,Flask内部都经历了什么 1.app.run()启动项目,ctrl点进源码 app.py: 1)执行了run_simple() 2)注意第三个参数,这里是Flask实例化的对象,在 ...

  2. js对象引用的注意

    var p = {}; var arr = []; function a(param) { // var i = param.a; for (var i = 0; i < 3; i++) { p ...

  3. openstack No valid host was found. There are not enough hosts available.

    root@dell-PowerEdge-T30:~# gedit /var/log/nova/nova-conductor.logroot@dell-PowerEdge-T30:~# gedit /v ...

  4. Sublime Text3括号配对与代码包围效果BracketHighlighter

    就这么看json等配置文件,太难了,我们需要括号匹配插件BracketHighlighter,但是装完以后只有下划线提示不明显,需要配置     Bracket Settings-Default 文件 ...

  5. html输入框去除记忆功能

    自动完成功能,只需把AUTOCOMPLETE设为off即可,如: 整个表单禁止自动完成 HTML code <FORM method=post action="submit.asp&q ...

  6. ERROR 2003 (HY000): Can't connect to MySQL server on 'localhost' (10061) : 第一次设置MySQL也适用

    [MySQL的安装环境]:windows7 64位 [MySQL的版本]:mysql-8.0.16-winx64 [错误描述]: ERROR 2003 (HY000): Can't connect t ...

  7. 674. Longest Continuous Increasing Subsequence@python

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence (s ...

  8. vue表单验证:vee-validate中文提示

    官方文档:https://baianat.github.io/vee-validate/guide/ vee-validate可用于vue项目中进行表单验证,使用方法在官方API上都可以查到: 使用过 ...

  9. Life is short.,You need Python

    真棒Python  https://awesome-python.com/ 精选的Python框架,库,软件和资源的精选列表. 灵感来自awesome-php. 真棒Python 管理员面板 算法和设 ...

  10. [图文][提供可行性脚本] CentOS 7 Fencing+Pacemaker三节点搭建高可用集群

    实验说明: 实验环境: 宿主机系统   :Fedora 28 WorkStation 虚拟机管理器 :Virt-Manager 1.5.1 虚拟机配置   :ha1  CentOS 7.2 1511 ...