BZOJ_2434_[Noi2011]阿狸的打字机_AC自动机+出栈入栈序+树状数组

Description

阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机。打字机上只有28个按键,分别印有26个小写英文字母和'B'、'P'两个字母。

经阿狸研究发现,这个打字机是这样工作的:

l 输入小写字母,打字机的一个凹槽中会加入这个字母(这个字母加在凹槽的最后)。

l 按一下印有'B'的按键,打字机凹槽中最后一个字母会消失。

l 按一下印有'P'的按键,打字机会在纸上打印出凹槽中现有的所有字母并换行,但凹槽中的字母不会消失。

例如,阿狸输入aPaPBbP,纸上被打印的字符如下:

a

aa

ab

我们把纸上打印出来的字符串从1开始顺序编号,一直到n。打字机有一个非常有趣的功能,在打字机中暗藏一个带数字的小键盘,在小键盘上输入两个数(x,y)(其中1≤x,y≤n),打字机会显示第x个打印的字符串在第y个打印的字符串中出现了多少次。

阿狸发现了这个功能以后很兴奋,他想写个程序完成同样的功能,你能帮助他么?

Input

输入的第一行包含一个字符串,按阿狸的输入顺序给出所有阿狸输入的字符。

第二行包含一个整数m,表示询问个数。

接下来m行描述所有由小键盘输入的询问。其中第i行包含两个整数x, y,表示第i个询问为(x, y)。

Output

输出m行,其中第i行包含一个整数,表示第i个询问的答案。

Sample Input

aPaPBbP
3
1 2
1 3
2 3

Sample Output

2
1
0

HINT

1<=N<=10^5

1<=M<=10^5
输入总长<=10^5

可以发现那个字符串相当于建立了一棵Trie树。
x在y中出现的次数等价于有多少个y串上的结点能通过fail指针走若干次能够到达x的终止节点。
也即x的终止节点在fail树上的子树中有多少个在y串上的结点。
于是我们需要处理“到子树路径加”“子树求和”。
先把fail树建出出栈入栈序,然后查询挂链,把x挂到y上,用给出的字符串遍历这颗Trie树。
向儿子走时入栈位置+1,向父亲走时出栈位置-1,打印的时候处理询问,对应子树区间为入栈到出栈这一段区间。
 
代码:
#include <cstdio>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 100050
struct Query {
int head[N],to[N],nxt[N],cnt,val[N];
inline void add(int u,int v,int w) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w;
}
}A;
struct Fail_Tree {
int head[N],to[N],nxt[N],cnt;
inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
}B;
int ch[N][26],fail[N],Q[N],l,r,m,cnt=1,siz[N],fa[N],dfn[N],son[N],c[N<<1],ans[N],flg[N];
char w[N];
void build() {
int i,p;
for(i=0;i<26;i++) ch[0][i]=1;
Q[r++]=1;
while(l<r) {
p=Q[l++];
for(i=0;i<26;i++) {
if(ch[p][i]) fail[ch[p][i]]=ch[fail[p]][i],Q[r++]=ch[p][i];
else ch[p][i]=ch[fail[p]][i];
}
}
}
void dfs(int x) {
int i;dfn[x]=++dfn[0];
for(i=B.head[x];i;i=B.nxt[i]) {
dfs(B.to[i]);
}
son[x]=++dfn[0];
}
void fix(int x,int v) {for(;x<=dfn[0];x+=x&(-x)) c[x]+=v;}
int inq(int x) {int re=0;for(;x;x-=x&(-x)) re+=c[x]; return re;}
void solve() {
int i,p=1,j;
for(i=1;w[i];i++) {
if(w[i]=='B') {
fix(son[p],-1);
p=fa[p];
}else if(w[i]=='P') {
for(j=A.head[p];j;j=A.nxt[j]) {
// printf("%d\n",A.val[j]);
ans[A.val[j]]=inq(son[A.to[j]])-inq(dfn[A.to[j]]-1);
}
}else {
p=ch[p][w[i]-'a'];
fix(dfn[p],1);
}
}
}
int main() {
scanf("%s%d",w+1,&m);
int i,p=1,x,y;
int bajisbdbdbioabsd=0;
for(i=1;w[i];i++) {
if(w[i]=='B') {
p=fa[p];
}else if(w[i]=='P') {
siz[p]++;
flg[++bajisbdbdbioabsd]=p;
}else {
int &k=ch[p][w[i]-'a'];
if(!k) k=++cnt; fa[k]=p; p=k;
}
}
build();
for(i=1;i<=cnt;i++) B.add(fail[i],i);
dfs(1);
// printf("%d\n",B.cnt);puts("FUCK");
// for(i=1;i<=cnt;i++) printf("%d %d\n",dfn[i],son[i]);
for(i=1;i<=m;i++) scanf("%d%d",&x,&y),A.add(flg[y],flg[x],i);
solve();
for(i=1;i<=m;i++) printf("%d\n",ans[i]);
}

BZOJ_2434_[Noi2011]阿狸的打字机_AC自动机+出栈入栈序+树状数组的更多相关文章

  1. BZOJ 2434: [Noi2011]阿狸的打字机( AC自动机 + DFS序 + 树状数组 )

    一个串a在b中出现, 那么a是b的某些前缀的后缀, 所以搞出AC自动机, 按fail反向建树, 然后查询(x, y)就是y的子树中有多少是x的前缀. 离线, 对AC自动机DFS一遍, 用dfs序+树状 ...

  2. BZOJ2434: [Noi2011]阿狸的打字机(AC自动机 树状数组)

    Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4140  Solved: 2276[Submit][Status][Discuss] Descript ...

  3. NOI 2011 阿狸的打字机 (AC自动机+dfs序+树状数组)

    题目大意:略(太长了不好描述) 良心LOJ传送门 先对所有被打印的字符串建一颗Trie树 观察数据范围,并不能每次打印都从头到尾暴力建树,而是每遍历到一个字符就在Trie上插入这个字符,然后记录每次打 ...

  4. 【bzoj3881】[Coci2015]Divljak AC自动机+树链的并+DFS序+树状数组

    题目描述 Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的. 接下来会发生q个操作,操作有两种形式: “1 P”,Bob往自己的集合里添加了一个字符串P. ...

  5. 【loj6041】「雅礼集训 2017 Day7」事情的相似度 后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组

    题目描述 给你一个长度为 $n$ 的01串,$m$ 次询问,每次询问给出 $l$ .$r$ ,求从 $[l,r]$ 中选出两个不同的前缀的最长公共后缀长度的最大值. $n,m\le 10^5$ 题解 ...

  6. BZOJ_3881_[Coci2015]Divljak_AC自动机+dfs序+树状数组

    BZOJ_3881_[Coci2015]Divljak_AC自动机+dfs序+树状数组 Description Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是 ...

  7. BZOJ_2434_[NOI2011]_阿狸的打字机_(AC自动机+dfs序+树状数组)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=2434 给出\(n\)个字符串,\(m\)个询问,对于第\(i\)个询问,求第\(x_i\)个字 ...

  8. BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]

    2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2545  Solved: 1419[Submit][Sta ...

  9. 【BZOJ2434】[NOI2011]阿狸的打字机 AC自动机+DFS序+树状数组

    [BZOJ2434][NOI2011]阿狸的打字机 Description 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P ...

随机推荐

  1. Python 和 Flask实现RESTful services

    使用Flask建立web services超级简单. 当然,也有很多Flask extensions可以帮助建立RESTful services,但是这个例实在太简单了,不需要使用任何扩展. 这个we ...

  2. BZOJ 3039: 玉蟾宫【dp】

    Description 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地.这片土地被分成N*M个格子,每个格子里写着'R'或者' ...

  3. Codeforces827D. Best Edge Weight

    $n \leq 2e5,m \leq 2e5$的有边权图,对每条边问:不改其他边的情况下这条边最多能是多少使得他一定在所有最小生成树上,如果无穷大输出-1. 典型题+耗时题,CF上的绝望时刻..打VP ...

  4. 内存管理——(exceptional C++ 条款9,条款10)

    C++的各个内存区域: (1)常量数据(const data)区 常量数据区存储的是字符串等在编译期间就能确定的值,在整个程序的生命周期内,这里的数据都是可用.区域内所有的数据都是 只读的. (2)栈 ...

  5. Tomcat绑定具体IP

    https://blog.csdn.net/paomadeng/article/details/1826880

  6. Java加载配置文件类

    /** *  对应配置文件类, */ package com.up72.parkSys.ThirdParty; import java.io.IOException;import java.io.In ...

  7. Java简单实验--关于课后提到的java重载函数的简单分析

    根据这一小段代码,获得了以下的测试截图: 简单分析:根据输出结果,判断这段代码用到了两个不同的函数方法,输出的不止有double类型的数,还有整型的数. 又根据类中的定义情况,square是根据判断传 ...

  8. eclipse导入maven工程步骤

    转自:http://jingyan.baidu.com/article/cbf0e500a6e3252eaa2893c1.html 感谢作者 步骤一 : 选择 “Import”操作 有两个途径可以选择 ...

  9. win7电脑定时开机设置方法

    在BIOS设置主界面中选择“Power Management Setup”,进入“电源管理”窗口. 注:缺省情况下,“Resume By Alarm”定时开机选项是关闭的. 将鼠标移到“Resume ...

  10. Ansible 详细用法说明(一)

    一.概述 运维工具按需不需要有代理程序来划分的话分两类: agent(需要有代理工具):基于专用的agent程序完成管理功能,puppet, func, zabbix agentless(无须代理工具 ...