bzoj1016 [JSOI2008]最小生成树计数——Kruskal+矩阵树定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016
从 Kruskal 算法的过程来考虑产生多种方案的原因,就是边权相同的边有一样的功能,从而带来了多种选择;
对于每一层次(边权相同)的边来说,它们最终会把图进一步连通;
所以在这一层之前缩好点,看看这一层连接出几个新连通块,对于每个连通块内部做矩阵树定理求生成树个数,再乘法原理乘起来即可;
注意高斯消元的矩阵不能直接用原图的点标号等,求行列式会出错;
疑惑:以及高斯消元 return 时为什么要加个 abs?
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
using namespace std;
vector<int>v[];
int n,m,fa[],pa[],a[][],c[][],ans=,mod=;
bool vis[];
struct N{
int hd,to,w;
N(int h=,int t=,int w=):hd(h),to(t),w(w) {}
}edge[];
bool cmp(N x,N y){return x.w<y.w;}
int find(int x,int f[]){return f[x]==x?x:find(f[x],f);}//
int gauss(int n)
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
a[i][j]%=mod;//
int fl=,ret=;
for(int i=;i<=n;i++)
{
int t=i;
for(int j=i+;j<=n;j++)
if(abs(a[j][i])>abs(a[t][i]))t=j;//abs
if(t!=i)
{
fl^=;
for(int j=i;j<=n;j++)swap(a[i][j],a[t][j]);
}
for(int j=i+;j<=n;j++)
while(a[j][i])
{
int tmp=a[i][i]/a[j][i];
for(int k=i;k<=n;k++)
{
int tp=a[i][k]; a[i][k]=a[j][k];//a=b
a[j][k]=(tp-a[j][k]*tmp)%mod;//b=a%b
}
fl^=;
}
(ret*=a[i][i])%=mod;
}
return (abs(ret)%mod+mod)%mod;//abs!?
// return ret;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)fa[i]=i;
for(int i=,x,y,z;i<=m;i++)
scanf("%d%d%d",&edge[i].hd,&edge[i].to,&edge[i].w);
sort(edge+,edge+m+,cmp);
for(int i=;i<=m+;i++)
{
if(edge[i].w!=edge[i-].w || i==m+)
{
for(int j=;j<=n;j++)
{
if(!vis[j])continue;
int f1=find(j,pa);
v[f1].push_back(j);//v是点的集合
vis[j]=;
}
for(int j=;j<=n;j++)
{
if(v[j].size()<=)continue;
memset(a,,sizeof a);
int siz=v[j].size();
for(int k=;k<siz;k++)
for(int l=k+;l<siz;l++)
{
int x=v[j][k],y=v[j][l],t=c[x][y];
// a[x][x]+=t; a[y][y]+=t;
// a[x][y]-=t; a[y][x]-=t;
a[k+][k+]+=t; a[l+][l+]+=t;
a[k+][l+]-=t; a[l+][k+]-=t;//!
}
(ans*=gauss(siz-))%=mod;
// (ans*=gauss(n-1))%=mod;
for(int k=;k<siz;k++)fa[v[j][k]]=j;
}
for(int j=;j<=n;j++)
{
pa[j]=fa[j]=find(j,fa);
v[j].clear();
}
}
int f1=find(edge[i].hd,fa),f2=find(edge[i].to,fa);
if(f1==f2)continue;
pa[find(f1,pa)]=find(f2,pa); vis[f1]=; vis[f2]=;
c[f1][f2]++; c[f2][f1]++;
}
for(int i=;i<=n;i++)//!
if(find(i,fa)!=find(i-,fa)){printf(""); return ;}
printf("%d",ans);
return ;
}
bzoj1016 [JSOI2008]最小生成树计数——Kruskal+矩阵树定理的更多相关文章
- [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- 洛谷4208 JSOI2008最小生成树计数(矩阵树定理+高斯消元)
qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才 ...
- bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等 就是说如果一种方案中权值为1的边有n条 ...
- BZOJ 1016 最小生成树计数(矩阵树定理)
我们把边从小到大排序,然后依次插入一种权值的边,然后把每一个联通块合并. 然后当一次插入的边不止一条时做矩阵树定理就行了.算出有多少种生成树就行了. 剩下的交给乘法原理. 实现一不小心就会让程序变得很 ...
- [BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- 【Matrix-tree定理】【并查集】【kruscal算法】bzoj1016 [JSOI2008]最小生成树计数
题意:求一个图的最小生成树个数. 矩阵树定理:一张无向图的生成树个数 = (度数矩阵 - 邻接矩阵)的任意一个n-1主子式的值. 度数矩阵除了对角线上D[i][i]为i的度数(不计自环)外,其他位置是 ...
- bzoj1016 [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3517 Solved: 1396[Submit][St ...
- 2018.09.24 bzoj1016: [JSOI2008]最小生成树计数(并查集+搜索)
传送门 正解是并查集+矩阵树定理. 但由于数据范围小搜索也可以过. 我们需要知道最小生成树的两个性质: 不同的最小生成树中,每种权值的边出现的个数是确定的 不同的生成树中,某一种权值的边连接完成后,形 ...
- BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )
不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...
随机推荐
- JavaScript之作用域和闭包
一.作用域 作用域共有两种主要的工作模型:第一种是最为普遍的,被大多数编程语言所采用的词法作用域,另外一种叫作动态作用域: JavaScript所采用的作用域模式是词法作用域. 1.词法作用域 词法作 ...
- http chunked 理解
https://imququ.com/post/transfer-encoding-header-in-http.html #! /usr/bin/python #coding:utf8 import ...
- python——文件管理
文件操作分为读.写.修改 一.读文件 f = open(file='D:/工作日常/兼职白领学生空姐模特护士联系方式.txt',mode='r',encoding='utf-8') data = f. ...
- 使用java发送电子邮件
经常在账号绑定邮箱或找回密码时,邮箱会收到一条验证邮件,好奇用代码该怎么发送邮件,看到了许多相关的博客,实现步骤都写的很详细,今天照着其他博客的步骤也确实实现了代码发送邮件,在这里重新记录下步骤,加深 ...
- 【01】《响应式Web设计:HTML5和CSS3实战》
[01] (魔芋:已看完.) [01]<响应式Web设计:HTML5和CSS3实战>(全).pdf 共246页. 2013年1月出版. 读后感:适合入门的书籍,对于响应式布局, ...
- pip提示Did not provide a commend
今天小编想要查看一下自己安装的pip版本,并且使用pip查看selenium版本等,结果在cmd输入pip,提示Did not provide a commend,如下所示: 在网上查询了很多方法,比 ...
- HDU1241&POJ2386 dfs简单题
2道题目都差不多,就是问和相邻所有点都有相同数据相连的作为一个联通快,问有多少个连通块 因为最近对搜索题目很是畏惧,总是需要看别人代码才能上手,就先拿这两道简单的dfs题目来练练手,顺便理一理dfs的 ...
- 单调队列&单调栈 基础
参考博客https://www.cnblogs.com/tham/p/8038828.html 例题 poj 2823 Sliding Window Time Limit: 12000MS Me ...
- codevs——1013 求先序排列
1013 求先序排列 2001年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 给出 ...
- Servlet中操作数据库
以下内容引用自http://wiki.jikexueyuan.com/project/servlet/database-access.html: 前提先新建数据库及插入模拟数据: create tab ...