Problem Description

Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.

Input

The first line of input contains an integer T, denoting the number of test cases.
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)

Output

For each test cases, you should output the maximum flow from source 1 to sink N.

Sample Input

2
3 2
1 2 1
2 3 1
3 3
1 2 1
2 3 1
1 3 1

Sample Output

Case 1: 1
Case 2: 2
解题思路:Dicic实现,即每个阶段先进行1次bfs给图分层,然后在该图上进行1次或多次寻找增广路,如果当前层次图中已找不到增广路,就重新给图分层,然后继续找增广路,只要t的level小于0就说明当前网络已达到最大流。时间复杂度大概为O(|E||V|2)。
AC代码一(312ms):
 #include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=;//int cnt=1;
struct edge{ int to, cap; size_t rev;
edge(int _to, int _cap, size_t _rev) :to(_to), cap(_cap), rev(_rev){}//构造函数,初始化结构体变量
};//指向节点to,边容量是cap,rev是记录为当前邻接点to反向边的编号
vector<edge> G[maxn];//邻接表,G[i][j]表示节点i连接的第j条边包含的所有信息
int t,n,m,x,y,c,level[maxn];//level数组在bfs时为分层图所用
void add_edge(int from,int to,int cap){//向图中增加一条从s到t容量为cap的边
G[from].push_back(edge( to, cap, G[to].size() ));
G[to].push_back(edge( from, , G[from].size() - ));//关键:反向建边,初始流量为0
}
//bfs给图分层次
void bfs(int s){
memset(level,-,sizeof(level));//刚开始每个节点的层次置为-1
queue<int> que;//队列实现bfs
level[s]=;//源点s为第0层
que.push(s);
while(!que.empty()){//给图分层
int v=que.front();que.pop();
for(size_t i=;i<G[v].size();++i){//遍历节点v与之相连的每条边
edge &e=G[v][i];//取出与节点v相连的第i条边
if(e.cap>&&level[e.to]<){//如果边残余流量大于0,且节点e.to还未分层
level[e.to]=level[v]+;//节点e.to的层次为指向它的节点v所在层次数加1
que.push(e.to);
}
}
}
}
//dfs寻找增广路,寻找当前图中s-->t的一条增广路
int dfs(int v,int t,int f){//v->t(t为汇点),当前增广路径上的最小剩余流量为f
if(v==t)return f;//到达汇点t
for(size_t i=;i<G[v].size();++i){//遍历节点v与之相连的每条边
edge &e=G[v][i];//取出与节点v相连的第i条边
if(e.cap> && level[v]<level[e.to]){//如果该边残流量大于0,且邻接点e.to是v的下一级,就增广下去
//cout<<"当前遍历到的点v:"<<v<<",邻接点to:"<<e.to<<endl;
int d=dfs(e.to,t,min(f,e.cap));//维护当前增广路上最小的剩余流量f
if(d>){//若f>0,说明找到了一条增广路
//cout<<v<<"-->"<<e.to<<",边容量为:"<<e.cap<<endl;
e.cap-=d;//正向边流量减去f
G[e.to][e.rev].cap+=d;//反向边流量加上f
return d;//沿着增广路回溯到源点s,不会在途中去深搜其他点,返回当前增广路上的最小剩余流量
}
}
}
return ;//否则说明没有增广路,返回0
}
//Dinic算法实现最大流,每个阶段执行完一次bfs分层之后,只需查找当前层次图中是否还增广路即可
int max_flow(int s,int t){
int flow=;
while(){
bfs(s);//每个阶段先bfs将图分层标记
if(level[t]<)return flow;
//如果分层之后,汇点t的层次小于0,即未被分层,说明再无增广路,则直接返回当前最大流量
int f=dfs(s,t,INF);
//cout<<"第"<<cnt++<<"次的最小剩余容量为:"<<f<<endl;
while(f>){//在该层次图中找到增广路
flow+=f;//累加到最大流中
f=dfs(s,t,INF);//继续找该层次图中是否还有增广路,直到f为0,
//cout<<"第"<<cnt++<<"次的最小剩余容量为:"<<f<<endl;
}
}
}
int main(){
while(~scanf("%d",&t)){
for(int cas=;cas<=t;++cas){
scanf("%d%d",&n,&m);//cnt=1;
for(int i=;i<=n;++i)G[i].clear();
while(m--){
scanf("%d%d%d",&x,&y,&c);
add_edge(x,y,c);
}
printf("Case %d: %d\n",cas,max_flow(,n));
}
}
return ;
}

AC代码二(93ms):当前弧优化Dinic算法。

 #include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=;
struct edge{ int to,cap;size_t rev;
edge(int _to, int _cap, size_t _rev):to(_to),cap(_cap),rev(_rev){}
};
int T,n,m,x,y,c,level[maxn];queue<int> que;vector<edge> G[maxn];size_t curfir[maxn];
void add_edge(int from,int to,int cap){
G[from].push_back(edge(to,cap,G[to].size()));
G[to].push_back(edge(from,,G[from].size()-));
}
bool bfs(int s,int t){
memset(level,-,sizeof(level));
while(!que.empty())que.pop();
level[s]=;
que.push(s);
while(!que.empty()){
int v=que.front();que.pop();
for(size_t i=;i<G[v].size();++i){
edge &e=G[v][i];
if(e.cap>&&level[e.to]<){
level[e.to]=level[v]+;
que.push(e.to);
}
}
}
return level[t]<?false:true;
}
int dfs(int v,int t,int f){
if(v==t)return f;
for(size_t &i=curfir[v];i<G[v].size();++i){
edge &e=G[v][i];
if(e.cap>&&(level[v]+==level[e.to])){
int d=dfs(e.to,t,min(f,e.cap));
if(d>){
e.cap-=d;
G[e.to][e.rev].cap+=d;
return d;
}
}
}
return ;
}
int max_flow(int s,int t){
int f,flow=;
while(bfs(s,t)){
memset(curfir,,sizeof(curfir));
while((f=dfs(s,t,INF))>)flow+=f;
}
return flow;
}
int main(){
while(~scanf("%d",&T)){
for(int cas=;cas<=T;++cas){
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i)G[i].clear();
while(m--){
scanf("%d%d%d",&x,&y,&c);
add_edge(x,y,c);
}
printf("Case %d: %d\n",cas,max_flow(,n));
}
}
return ;
}

题解报告:hdu 3549 Flow Problem(最大流入门)的更多相关文章

  1. HDU 3549 Flow Problem(最大流)

    HDU 3549 Flow Problem(最大流) Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/ ...

  2. 网络流 HDU 3549 Flow Problem

    网络流 HDU 3549 Flow Problem 题目:pid=3549">http://acm.hdu.edu.cn/showproblem.php?pid=3549 用增广路算法 ...

  3. hdu 3549 Flow Problem

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3549 Flow Problem Description Network flow is a well- ...

  4. hdu 3549 Flow Problem【最大流增广路入门模板题】

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3549 Flow Problem Time Limit: 5000/5000 MS (Java/Others ...

  5. hdu 3549 Flow Problem (网络最大流)

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

  6. hdu 3549 Flow Problem Edmonds_Karp算法求解最大流

    Flow Problem 题意:N个顶点M条边,(2 <= N <= 15, 0 <= M <= 1000)问从1到N的最大流量为多少? 分析:直接使用Edmonds_Karp ...

  7. HDU 3549 Flow Problem 网络流(最大流) FF EK

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Tot ...

  8. HDU 3549 Flow Problem (最大流ISAP)

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

  9. hdu 3549 Flow Problem (Dinic)

    Flow ProblemTime Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total ...

  10. hdu 3549 Flow Problem 最大流问题 (模板题)

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

随机推荐

  1. 闭包传参 余额计算 钩子hook 闭包中的this JavaScript 钩子

    闭包传参  余额计算    钩子hook 小程序 a=function(e){console.log(this)}() a=function(e){console.log(this)}() VM289 ...

  2. 事件序列化器 Flume 的无数据丢失保证,Channel 和事务

    小结: 1.Flume 的持久性保证依赖于使用的持久性Channel 的保证 通过事件序列化器将Flume事件转化为外部存储格式 主要的事件序列化器: 1.文本 2.带有头信息的文本 3.Avro序列 ...

  3. p1697食物链

    动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A.现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种.有人用两种说法 ...

  4. POJ2516 Minimum Cost —— 最小费用最大流

    题目链接:https://vjudge.net/problem/POJ-2516 Minimum Cost Time Limit: 4000MS   Memory Limit: 65536K Tota ...

  5. YTU 2578: 分数减法——结构体

    2578: 分数减法--结构体 时间限制: 1 Sec  内存限制: 128 MB 提交: 522  解决: 399 题目描述 分数可以看成是由字符'/'分割两个整数构成,可以用结构体类型表示.请用结 ...

  6. LoadRunner 技巧之 IP欺骗

    IP欺骗也是也loadrunner自带的一个非常有用的功能. 需要使用ip欺骗的原因:1.当某个IP的访问过于频繁,或者访问量过大是,服务器会拒绝访问请求,这时候通过IP欺骗可以增加访问频率和访问量, ...

  7. JavaScript SHA-1

    1. [文件] webtoolkit.sha1.js ~ 4KB     /****  Secure Hash Algorithm (SHA1)*  http://www.huiyi8.com/css ...

  8. Oracle:通过dbv查看数据文件是否有坏块

    我们备份的数据文件,可以通过oacle自带的dbv工具来查看是否是好的. 下面实验如下: 环境:oracle10.2.0.1 1.检查数据文件是否有坏块 [oracle@app orcl]$ dbv ...

  9. servlet中的servletURL,servletURI和servletPath

    String    servletURL=request.getservletURL(); url:站点名+当前web应用名+(目录名)+页面名 String    servletURI=reques ...

  10. Ubuntu 16.04 如何使用Samba服务器

    对于Windows与Ubuntu之间的数据传输,我们习惯于使用FTP工具,不过还是有学员问到samba服务器搭建和使用的问题,这便是本文的来由. Ubuntu版本:ARM裸机1期加强版配套的Ubunt ...