# 构建小顶堆跳转
def sift(li, low, higt):
tmp = li[low]
i = low
j = 2 * i + 1
while j <= higt: # 情况2:i已经是最后一层
if j + 1 <= higt and li[j + 1] < li[j]: # 右孩子存在并且小于左孩子
j += 1
if tmp > li[j]:
li[i] = li[j]
i = j
j = 2 * i + 1
else:
break # 情况1:j位置比tmp小
li[i] = tmp def top_k(li, k):
heap = li[0:k]
# 建堆
for i in range(k // 2 - 1, -1, -1):
sift(heap, i, k - 1)
for i in range(k, len(li)):
if li[i] > heap[0]:
heap[0] = li[i]
sift(heap, 0, k - 1)
# 挨个输出
for i in range(k - 1, -1, -1):
heap[0], heap[i] = heap[i], heap[0]
sift(heap, 0, i - 1)
return heap li = [0, 8, 6, 2, 4, 9, 1, 4, 6]
print(top_k(li, 3))

python堆排序实现TOPK问题的更多相关文章

  1. [数据结构]——堆(Heap)、堆排序和TopK

    堆(heap),是一种特殊的数据结构.之所以特殊,因为堆的形象化是一个棵完全二叉树,并且满足任意节点始终不大于(或者不小于)左右子节点(有别于二叉搜索树Binary Search Tree).其中,前 ...

  2. 关于堆排序和topK算法的PHP实现

    问题描述 topK算法,简而言之,就是求n个数据里的前m大个数据,一般而言,m<<n,也就是说,n可能有几千万,而m只是10或者20这样的两位数. 思路 最简单的思路,当然是使用要先对这n ...

  3. python 堆排序

    堆排序就是把堆顶的最大数取出, 将剩余的堆继续调整为最大堆,具体过程在第二块有介绍,以递归实现 剩余部分调整为最大堆后,再次将堆顶的最大数取出,再将剩余部分调整为最大堆,这个过程持续到剩余数只有一个时 ...

  4. python堆排序

    堆是完全二叉树 子树是不相交的 度 节点拥有子树的个数 满二叉树: 每个节点上都有子节点(除了叶子节点) 完全二叉树: 叶子结点在倒数第一层和第二层,最下层的叶子结点集中在树的左部 ,在右边的话,左子 ...

  5. 现有n 个乱序数,都大于 1000 ,让取排行榜前十,时间复杂度为o(n), top10, 或者 topK,应用场景榜单Top:10,堆实现Top k

    一.topK python实现   def topk(k, lst): top = [0 for i in range(k)] #生成一个长度为K 的有序列表 for item in lst: #循环 ...

  6. python常用算法学习(3)

    1,什么是算法的时间和空间复杂度 算法(Algorithm)是指用来操作数据,解决程序问题的一组方法,对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但是在过程中消耗的资源和时间却会有很大 ...

  7. 牛B三人组-快速排序-堆排序-归并排序

    快速排序 随便取个数,作为标志值,这里就默认为索引位置为0的值 记录左索引和右索引,从右往左找比标志值小的,小值和左索引值交换,右索引变化,然后从左往右找比标志值大的,大值和右索引值交换,左索引变化 ...

  8. 排序NB三人组

    排序NB三人组 快速排序,堆排序,归并排序 1.快速排序 方法其实很简单:分别从初始序列“6  1  2 7  9  3  4  5 10  8”两端开始“探测”.先从右往左找一个小于6的数,再从左往 ...

  9. 算法(1):查找&排序

    算法(Algorithm):一个计算过程,解决问题的方法 程序 = 数据结构+算法 时间复杂度: 当算法过程中出现循环折半的时候,复杂度式子中会出现 O(logn) 时间复杂度小结: 1. 时间复杂度 ...

随机推荐

  1. 当年用httpclient时踩过的那些坑

    一.前言 httpclient是java开发中最常用的工具之一,通常大家会使用其中比较基础的api去调用远程.长期开发爬虫,会接触httpclient不常用的api,同时会遇到各式各样的坑,本文将总结 ...

  2. RabbitMQ/pika模块

    简介 MessageQueue用于解决跨进程.跨线程.跨应用.跨网络的通信问题. RabbitMQ使用erlang开发,在windows上使用时要先安装erlang. 官方的示例比较容易理解,可以点这 ...

  3. 2016/06/02 网摘记录 svn 服务器端 客户端 安装使用

    http://www.cnblogs.com/xiaobaihome/archive/2012/03/20/2408089.html http://www.cnblogs.com/xiaobaihom ...

  4. HDU Shell Necklace CDQ分治+FFT

    Shell Necklace Problem Description Perhaps the sea‘s definition of a shell is the pearl. However, in ...

  5. 百度新算法与网站SEO提升

  6. js中的逻辑与(&&)与逻辑或(||)

    var foo = 1; var bar = 0; var tar = false; var baz = 2; 一.js中的逻辑与(&&) 1.当第一个数为true时,返回第二个数: ...

  7. ADB运行框架原理解析【转】

    本文转载自:http://blog.csdn.net/wlwl0071986/article/details/50935496 一.adb守护进程的初始化 源码路径:~/system/core/adb ...

  8. 机器学习 Hidden Markov Models 2

    Hidden Markov Models 下面我们给出Hidden Markov Models(HMM)的定义,一个HMM包含以下几个要素: ∏=(πi)表示初始状态的向量.A={aij}状态转换矩阵 ...

  9. [Selenium] 操作页面元素等待时间

    WebDriver 在操作页面元素等待时间时,提供2种等待方式:一个为显式等待,一个为隐式等待,其区别在于: 1)显式等待:明确地告诉 WebDriver 按照特定的条件进行等待,条件未达到就一直等待 ...

  10. iOS中键盘的收起

    在UIViewController中收起键盘,除了调用相应控件的resignFirstResponder方法之外,还有另外三种方法: 重载UIViewController中的touchesBegin方 ...