Description

有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1。现在N个松鼠要走到一个松鼠家去,求走过的最短距离。

Input

第一行给出数字N,表示有多少只小松鼠。0<=N<=10^5

下面N行,每行给出x,y表示其家的坐标。

-109<=x,y<=109

Output

表示为了聚会走的路程和最小为多少。

Sample Input

6

-4 -1

-1 -2

2 -4

0 2

0 3

5 -2

Sample Output

20


如果是曼哈顿距离十分好求,我们可以分开考虑

将x排序,利用前缀后缀和,算出每个点在x轴方向到其他点的距离,将答案记录下来,再按y排序,即可统计答案

但是这题并不是曼哈顿距离,而是切比雪夫距离,怎么办?

其实有个结论,将每个点的坐标改为\((\frac{x+y}{2},\frac{x-y}{2})\)后,两点之间的曼哈顿距离等于切比雪夫距离

证明的话可以自己手推,记得考虑大小关系(其实是我懒了)

这种结论题。。。不知道结论根本不会写吧。。。至少我是没有当场推结论的水平。。。

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=1e5;
struct S1{
int x,y,ID;
void insert(int _x,int _y,int _ID){x=_x,y=_y,ID=_ID;}
}A[N+10];
bool cmpx(const S1 &x,const S1 &y){return x.x<y.x;}
bool cmpy(const S1 &x,const S1 &y){return x.y<y.y;}
ll pre[N+10],suf[N+10],v[N+10];
int main(){
int n=read(); ll Ans=1e18;
for (int i=1;i<=n;i++){
int x=read(),y=read();
A[i].insert(x+y,x-y,i);
}
sort(A+1,A+1+n,cmpx);
for (int i=1;i<=n;i++) pre[i]=pre[i-1]+A[i].x;
for (int i=n;i>=1;i--) suf[i]=suf[i+1]+A[i].x;
for (int i=1;i<=n;i++) v[A[i].ID]=(1ll*i*A[i].x-pre[i])+(suf[i]-1ll*(n-i+1)*A[i].x);
sort(A+1,A+1+n,cmpy);
for (int i=1;i<=n;i++) pre[i]=pre[i-1]+A[i].y;
for (int i=n;i>=1;i--) suf[i]=suf[i+1]+A[i].y;
for (int i=1;i<=n;i++) Ans=min(Ans,(1ll*i*A[i].y-pre[i])+(suf[i]-1ll*(n-i+1)*A[i].y)+v[A[i].ID]);
printf("%lld\n",Ans>>1);
return 0;
}

[TJOI2013]松鼠聚会的更多相关文章

  1. BZOJ_3170_[Tjoi2013]松鼠聚会_切比雪夫距离+前缀和

    BZOJ_3170_[Tjoi2013]松鼠聚会_切比雪夫距离+前缀和 题意:有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点, ...

  2. 【bzoj3170】[Tjoi2013]松鼠聚会

    3170: [Tjoi2013]松鼠聚会 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1670  Solved: 885[Submit][Statu ...

  3. [TJOI2013]松鼠聚会 曼哈顿距离

    [TJOI2013]松鼠聚会 luogu P3964 首先容易得到两点间距离是\(max(|x_1-x_2|, |y_1-y_2|)\)(即切比雪夫距离) 然后有个套路:原\((x,y)\)求曼哈顿距 ...

  4. [TJOI2013]松鼠聚会(枚举)

    [TJOI2013]松鼠聚会 题目描述 草原上住着一群小松鼠,每个小松鼠都有一个家.时间长了,大家觉得应该聚一聚.但是草原非常大,松鼠们都很头疼应该在谁家聚会才最合理. 每个小松鼠的家可以用一个点x, ...

  5. 洛谷P3964 [TJOI2013]松鼠聚会 [二分答案,前缀和,切比雪夫距离]

    题目传送门 松鼠聚会 题目描述 草原上住着一群小松鼠,每个小松鼠都有一个家.时间长了,大家觉得应该聚一聚.但是草原非常大,松鼠们都很头疼应该在谁家聚会才最合理. 每个小松鼠的家可以用一个点x,y表示, ...

  6. [TJOI2013]松鼠聚会 BZOJ 3170

    题目描述 草原上住着一群小松鼠,每个小松鼠都有一个家.时间长了,大家觉得应该聚一聚.但是草原非常大,松鼠们都很头疼应该在谁家聚会才最合理. 每个小松鼠的家可以用一个点x,y表示,两个点的距离定义为点( ...

  7. BZOJ3170: [Tjoi2013]松鼠聚会(切比雪夫距离转曼哈顿距离)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1524  Solved: 803[Submit][Status][Discuss] Descripti ...

  8. 3170: [Tjoi2013]松鼠聚会

    Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 1804  Solved: 968[Submit][Status][Discuss] Descript ...

  9. 洛谷3964 [TJOI2013]松鼠聚会

    题目描述 草原上住着一群小松鼠,每个小松鼠都有一个家.时间长了,大家觉得应该聚一聚.但是草原非常大,松鼠们都很头疼应该在谁家聚会才最合理. 每个小松鼠的家可以用一个点x,y表示,两个点的距离定义为点( ...

随机推荐

  1. 国内代码托管平台(Git和SVN)

        Github(Git和SVN)https://github.com/ 可以说GitHub的出现完全颠覆了以往大家对代码托管网站的认识.GitHub不但是一个代码托管网站,更是一个程序员的SNS ...

  2. 《The Swift Programming Language》的笔记-第27页

    页 1 type safelanguage 本页的主要内容是说swift语言是"类型检查"的安全型编程语言.意思是赋值语句的左值和右值的类型要一致,左值声明是string型变量那么 ...

  3. 设计模式之解释器模式(Interpreter)摘录

    23种GOF设计模式一般分为三大类:创建型模式.结构型模式.行为模式. 创建型模式抽象了实例化过程,它们帮助一个系统独立于怎样创建.组合和表示它的那些对象.一个类创建型模式使用继承改变被实例化的类,而 ...

  4. Swift String 一些经常用法

    直接上代码 //字符串 //1 推断字符串是否为空 var test1Str="" var test1Str2:String = String(); println("t ...

  5. 数据结构与算法问题 AVL二叉平衡树

    AVL树是带有平衡条件的二叉查找树. 这个平衡条件必须保持,并且它必须保证树的深度是O(logN). 一棵AVL树是其每一个节点的左子树和右子树的高度最多差1的二叉查找树. (空树的高度定义为-1). ...

  6. CSS制作翻牌特效

    应一个朋友要求替他把原本静态页面做成翻牌的特效. 主要应用了CSS3的transform,transiton.首先写好标签,一个ul下两个li元素,通过position的absolue设置两个li元素 ...

  7. 【iOS系列】-UIScrollView的介绍及结合UIPageControl实现图片播放的实例

    [iOS系列]-UIScrollView的介绍及结合UIPageControl实现图片播放的实例 第一:UIScrollView的常用属性 //表示UIScrollView内容的尺寸,滚动范围 @pr ...

  8. 2016/04/13 ①html 中各种分割线------------------------------------------ ② 控制文字显示

    ①各种分割线Html代码 1.<HR> 2.<HR align=center width=300 color=#987cb9 SIZE=1>align 线条位置(可选left. ...

  9. java8--网络编程(java疯狂讲义3复习笔记)

    重点复习一下网络通信和代理 java的网络通信很简单,服务器端通过ServerSocket建立监听,客户端通过Socket连接到指定服务器后,通信双方就可以通过IO流进行通信. 需要重点看的工具类:I ...

  10. SpringMVC_基本配置 --跟海涛学SpringMVC(和自己在项目中的实际使用的对比)

    ☆依赖jar包: 1.Spring框架jar 包: 为了简单,将spring-framework-3.1.1.RELEASE-with-docs.zip/dist/下的所有jar包拷贝到项目的WEB- ...