好题,这题是我理解的第一道斜率优化dp,自然要写一发题解。首先我们要写出普通的表达式,然后先用前缀和优化。然后呢?我们观察发现,x【i】是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增就行了。

放一个证明题解。

设f[i]表示在i点建仓库的最小费用,易得方程:f[i]=min(f[j]+(x[i]-x[j+1])*p[j+1]+(x[i]-x[j+1])*p[j+2]...) =min(f[j]+c[i]+x[i]*(p[j+1..i])-(x[j+1]*p[j+1]+...+x[i]*p[i]))

设s[i]=p[1]+p[2]+..p[i],ss[i]=x[1]*p[1]+...x[i]*p[i]
f[i]=f[j]+c[i]+x[i]*(s[i]-s[j])-(ss[i]-ss[j]) 设j<k即s[j]<s[k],当取k更优时满足:
f[j]+x[i]*(s[i]-s[j])+ss[j]>f[k]+x[i]*(s[i]-s[k])+ss[k]
x[i]>(f[k]-f[j]+ss[k]-ss[j])/(s[k]-s[j]) 设x<y<z,cale(i,j)表示i、j间的斜率
若cale(x,y)>cale(y,z)
1.x[i]>cale(x,y)>cale(y,z)则z更优
2.x[i]<cale(x,y),则x更优
因为x[i]递增,情况1保持不变,情况2可能会变成情况1还是不可能取y
综上当cale(x,y)>cale(y,z)时可以踢掉y,即维护斜率递增
题干:
题目背景

小B的班级数学学到多项式乘法了,于是小B给大家出了个问题:用编程序来解决多项式乘法的问题。
题目描述 L公司有N个工厂,由高到底分布在一座山上。 工厂1在山顶,工厂N在山脚。 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。 突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。 由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci。 对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送1个单位距离的费用是1。 假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到以下数据: 工厂i距离工厂1的距离Xi(其中X1=);
工厂i目前已有成品数量Pi;
在工厂i建立仓库的费用Ci; 请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。
输入输出格式
输入格式: 第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。 输出格式: 仅包含一个整数,为可以找到最优方案的费用。

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(register int i = a;i <= n;i++)
#define lv(i,a,n) for(register int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
const int N = 1e6 + ;
int n,m,x[N],q[N],c[N];
ll f[N],ss[N],s[N];
db calc(int j,int k)
{
return (f[k] - f[j] + ss[k] - ss[j]) * 1.0 / (s[k] - s[j]);
}
int main()
{
read(n);
duke(i,,n)
{
read(x[i]);read(s[i]);read(c[i]);
ss[i] = ss[i - ] + x[i] * s[i];
s[i] += s[i - ];
}
for(int i = ,l = ,r = ;i <= n;i++)
{
while(l < r && x[i] > calc(q[l],q[l + ])) l++;
f[i] = f[q[l]] + c[i] - ss[i] + ss[q[l]] + x[i] * (s[i] - s[q[l]]);
while(l < r && calc(q[r - ],q[r]) > calc(q[r],i)) r--;
q[++r] = i;
}
printf("%lld\n",f[n]);
return ;
}
 

P2120 [ZJOI2007]仓库建设 斜率优化dp的更多相关文章

  1. 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP

    做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...

  2. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  3. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  4. bzoj1096[ZJOI2007]仓库建设 斜率优化dp

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5482  Solved: 2448[Submit][Stat ...

  5. 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp

    题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...

  6. [ZJOI2007] 仓库建设 - 斜率优化dp

    大脑真是个很优秀的器官,做事情之前总会想着这太难,真的逼着自己做下去,回头看看,其实也不过如此 很朴素的斜率优化dp了 首先要读懂题目(我的理解能力好BUG啊) 然后设\(dp[i]\)表示处理完前\ ...

  7. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

  8. 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化

    [BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...

  9. [ZJOI2007]仓库建设(斜率优化)

    L公司有N个工厂,由高到底分布在一座山上. 工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用. 突然有一天,L公司的总裁L先生接到气象部 ...

随机推荐

  1. 诊断:expdp导出时遇到错误ORA-31693和ORA-00922

    11.2.0.1使用数据泵expdp导出时,如果使用parallel,可能会遇到 ORA-: Table data object "OWNER"."TABLE" ...

  2. 通过request对象获取客户端的相关信息

    通过request对象获取客户端的相关信息 制作人:全心全意 通过request对象可以获取客户端的相关信息.例如HTTP报头信息.客户信息提交方式.客户端主机IP地址.端口号等等. request获 ...

  3. 微信小程序理解8大误区,你中招了吗?

    2016年年底程序员话题中最火的是什么?莫过于微信小程序!小程序被炒得沸沸扬扬,再次证明一点,微信想让什么火,真的就能让什么火!这种能力真是全中国再也没有人有了,政府也没有.但是,小程序刚刚开始,你对 ...

  4. java List 数组删除元素

    在 java 中,ArrayList 是一个很常用的类,在编程中经常要对 ArrayList 进行增.删.改.查操作.之前在学校时一直认为删除操作是最简单的,现在才越发觉得自己愚蠢.只需要设置好预期条 ...

  5. 如何创建新用户和授予MySQL中的权限

    原创官网http://www.howtoing.com/how-to-create-a-new-user-and-grant-permissions-in-mysql/ 关于MySQL MySQL是一 ...

  6. Maven学习总结(30)——Maven项目通用三级版本号说明

     项目版本号说明     当前版本号:1.0.0-SNAPSHOT     本项目采用通用的三级版本号,版本号格式是[主版本号].[副版本号].[修复版本号]-[稳定状态],如:1.0.0-SNAPS ...

  7. HDU 1042 大数计算

    这道题一开始就采用将一万个解的表打好的话,虽然时间效率比较高,但是内存占用太大,就MLE 这里写好大数后,每次输入一个n,然后再老老实实一个个求阶层就好 java代码: /** * @(#)Main. ...

  8. noip模拟赛 第K小数

    [问题描述]有两个正整数数列,元素个数分别为N和M.从两个数列中分别任取一个数相乘,这样一共可以得到N*M个数,询问这N*M个数中第K小数是多少.[输入格式]输入文件名为number.in.输入文件包 ...

  9. 清北学堂模拟赛d1t2 火柴棒 (stick)

    题目描述众所周知的是,火柴棒可以拼成各种各样的数字.具体可以看下图: 通过2根火柴棒可以拼出数字“1”,通过5根火柴棒可以拼出数字“2”,以此类推. 现在LYK拥有k根火柴棒,它想将这k根火柴棒恰好用 ...

  10. vue.js 利用组件之间通讯,写一个弹出框例子

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...