题目描述

传送门

题解:

这个题真的是巨坑,经过了6个WA,2个TLE,1个RE后才终于搞出来,中间都有点放弃希望了。。。

主要是一定要注意longlong!

下面开始说明题解。

朴素的想法是:

如果两个数字可以匹配,那么连一条边,那么问题就转化成了一个图的最大边匹配。

然而,一般图的最大边匹配是NP的,所以竞赛中一定不会出。

所以,这种题目一般会满足二分图性质。

我们可以跑几组大数据,进行二分图染色,发现的确是二分图。

仔细思考就可以发现,如果我们设f[i]为i的质因数个数,那么如果i和j可以配对,他们的f值奇偶性一定不同!

所以这个图一定是二分图。

跑一遍最小(最大)费用流就好辣。

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll maxn = 1e6;
const ll inf = 1e15;
int prime[maxn + 10], check[maxn + 10];
int s, t;
int n, cnt;
void init() {
memset(check, 0, sizeof(check));
cnt = 0;
for (int i = 2; i <= maxn; i++) {
if (!check[i])
prime[cnt++] = i;
for (int j = 0; j < cnt; j++) {
if (i * prime[j] > maxn)
break;
check[i * prime[j]] = true;
if (i % prime[j] == 0)
break;
}
}
}
const int N = 300;
ll a[N], b[N], c[N];
struct edge {
int from, to;
ll cap, flow, cost;
};
vector<ll> G[N];
vector<edge> E;
void add_edge(int from, int to, ll cap, ll cost) {
E.push_back((edge){from, to, cap, 0, cost});
E.push_back((edge){to, from, 0, 0, -cost});
int m = E.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
int calc(int x) {
int ret = 0;
for (int i = 0; prime[i] <= x; i++) {
if (x % prime[i] == 0) {
while (x % prime[i] == 0 && x) {
ret++;
x /= prime[i];
}
}
}
return ret;
}
int pre[N];
int inq[N];
ll dist[N];
ll fi[N];
bool spfa(ll &flow, ll &cost) {
for (int i = 0; i <= n + 1; i++) {
dist[i] = -inf;
}
memset(inq, 0, sizeof(inq));
dist[s] = 0, inq[s] = 1, pre[s] = 0, fi[s] = inf;
queue<int> q;
q.push(s);
while (!q.empty()) {
int u = q.front();
q.pop();
inq[u] = 0;
for (int i = 0; i < G[u].size(); i++) {
edge &e = E[G[u][i]];
if (e.cap > e.flow && dist[e.to] < dist[u] + e.cost) {
dist[e.to] = dist[u] + e.cost;
pre[e.to] = G[u][i];
fi[e.to] = min(fi[u], e.cap - e.flow);
if (!inq[e.to]) {
q.push(e.to);
inq[e.to] = 1;
}
}
}
}
if (dist[t] <= -inf)
return false;
if (cost + dist[t] * fi[t] < 0) {
ll temp = cost / (-dist[t]); //temp:还能够增加的流
flow += temp;
return false;
}
flow += fi[t];
cost += dist[t] * fi[t];
int u = t;
while (u != s) {
E[pre[u]].flow += fi[t];
E[pre[u] ^ 1].flow -= fi[t];
u = E[pre[u]].from;
}
return true;
}
ll mcmf(int s, int t) {
ll flow = 0;
ll cost = 0;
while (spfa(flow, cost))
;
return flow;
}
int main() {
init();
// freopen("input", "r", stdin);
scanf("%d", &n);
s = 0, t = n + 1;
for (int i = 1; i <= n; i++)
scanf("%lld", &a[i]);
for (int i = 1; i <= n; i++)
scanf("%lld", &b[i]);
for (int i = 1; i <= n; i++)
scanf("%lld", &c[i]);
for (int i = 1; i <= n; i++) {
int f1 = calc(a[i]), f2;
for (int j = 1; j <= n; j++) {
f2 = calc(a[j]);
if ((f1 % 2 == 1) && ((f2 == f1 - 1 && a[i] % a[j] == 0) ||
(f1 == f2 - 1 && a[j] % a[i] == 0))) {
add_edge(i, j, inf, c[i] * c[j]);
}
}
if (f1 % 2 == 1)
add_edge(s, i, b[i], 0);
else
add_edge(i, t, b[i], 0);
}
ll ans = mcmf(s, t);
printf("%lld\n", ans);
}

[bzoj4514][SDOI2016]数字配对——二分图的更多相关文章

  1. bzoj4514 [Sdoi2016]数字配对

    Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...

  2. bzoj4514 [Sdoi2016]数字配对(网络流)

    Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...

  3. BZOJ4514 [Sdoi2016]数字配对 【费用流】

    题目 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×c ...

  4. BZOJ4514——[Sdoi2016]数字配对

    有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...

  5. bzoj4514: [Sdoi2016]数字配对--费用流

    看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...

  6. BZOJ4514[Sdoi2016]数字配对——最大费用最大流

    题目描述 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci ...

  7. bzoj4514: [Sdoi2016]数字配对(费用流)

    传送门 ps:费用流增广的时候费用和流量打反了……调了一个多小时 每个数只能参与一次配对,那么这就是一个匹配嘛 我们先把每个数分解质因数,记质因子总个数为$cnt_i$,那如果$a_i/a_j$是质数 ...

  8. 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流

    [bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...

  9. 【BZOJ4514】[Sdoi2016]数字配对 费用流

    [BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...

随机推荐

  1. pytorch中如何使用预训练词向量

    不涉及具体代码,只是记录一下自己的疑惑. 我们知道对于在pytorch中,我们通过构建一个词向量矩阵对象.这个时候对象矩阵是随机初始化的,然后我们的输入是单词的数值表达,也就是一些索引.那么我们会根据 ...

  2. Flask初学者:蓝图Blueprint

    蓝图这个名字好像就是根据单词Blueprint字面意思来,跟平常我们理解的蓝图完全挂不上钩,这里蓝图就是指Blueprint. 使用蓝图的好处是可以将不同功能作用的视图函数/类视图放到不同的模块中,可 ...

  3. 数据库DDL

    自己对数据库的整理,也是对自己知识的梳理 SQL ( Structure query language ) 结构化查询语言 SQL语言分为4个部分 1.DDL(Data Definition Lang ...

  4. 散列--数据结构与算法JavaScript描述(8)

    散列 散列是一种常用的数据存储技术,散列后的数据可以快速地插入或取用. 散列使用的数据结构叫做散列表. 在散列表上插入.删除和取用数据都非常快,但是对于查找操作来说却效率低下,比如查找一组数据中的最大 ...

  5. 笔记-restful

    笔记-restful 1.      restful简介 restful:representational state transfer,简称REST,描述了一个架构样式的网络系统. 值得注意的是RE ...

  6. 15.6,redis主从同步

    redis主从同步 原理:1. 从服务器向主服务器发送 SYNC 命令.2. 接到 SYNC 命令的主服务器会调用BGSAVE 命令,创建一个 RDB 文件,并使用缓冲区记录接下来执行的所有写命令.3 ...

  7. I2C中24C02从地址设置

    从设备地址 首先,先看一下AT24C02的芯片资料,我们会发现AT24C02有三个地址A0,A1,A2.同时,我们会在资料的Device Address介绍发现I2C器件一共有七位地址码,还有一位是读 ...

  8. CSAcademy Palindromic Concatenation 字符串哈希

    题意: 题目链接 给出\(n\)个字符串,求有多少对\((i,j),i \neq j\)使得\(s_i\)与\(s_j\)拼起来是回文串 分析: 设\(s_i,s_j\)的长度分别为\(L_i, L_ ...

  9. Toolbar中menu菜单文字颜色的修改

    Toolbar菜单中menu当中我们大多数都使用图片来按钮,可是有些时候我们也会直接使用文字,文字的颜色如何修改呢. 其实很简单,我们只要修改styles.xml文件中,添加一句 <item n ...

  10. ACE_DEBUG buffer

    ACE中输出日志时,发现太长会被截断. 1.测试 ] = {}; ACE_OS::memset(buf,); ACE_DEBUG((LM_INFO, ACE_TEXT("##@@##[ %s ...