Facial landmark detection  (Facial keypoints detection)

OpenSourceLibrary: DLib

Project Home:  http://dlib.net/

Git address:     https://github.com/davisking/dlib.git

Example file:    git/dlib/examples/face_landmark_detection_ex.cpp

 #include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/image_processing/render_face_detections.h>
#include <dlib/image_processing.h>
#include <dlib/gui_widgets.h>
#include <dlib/image_io.h>
#include <iostream> using namespace dlib;
using namespace std; // ---------------------------------------------------------------------------------------- int main(int argc, char** argv)
{
try
{
// This example takes in a shape model file and then a list of images to
// process. We will take these filenames in as command line arguments.
// Dlib comes with example images in the examples/faces folder so give
// those as arguments to this program.
if (argc == )
{
cout << "Call this program like this:" << endl;
cout << "./face_landmark_detection_ex shape_predictor_68_face_landmarks.dat faces/*.jpg" << endl;
cout << "\nYou can get the shape_predictor_68_face_landmarks.dat file from:\n";
cout << "http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2" << endl;
return ;
} // We need a face detector. We will use this to get bounding boxes for
// each face in an image.
frontal_face_detector detector = get_frontal_face_detector();
// And we also need a shape_predictor. This is the tool that will predict face
// landmark positions given an image and face bounding box. Here we are just
// loading the model from the shape_predictor_68_face_landmarks.dat file you gave
// as a command line argument.
shape_predictor sp;
deserialize(argv[]) >> sp; image_window win, win_faces;
// Loop over all the images provided on the command line.
for (int i = ; i < argc; ++i)
{
cout << "processing image " << argv[i] << endl;
array2d<rgb_pixel> img;
load_image(img, argv[i]);
// Make the image larger so we can detect small faces.
pyramid_up(img); // Now tell the face detector to give us a list of bounding boxes
// around all the faces in the image.
std::vector<rectangle> dets = detector(img);
cout << "Number of faces detected: " << dets.size() << endl; // Now we will go ask the shape_predictor to tell us the pose of
// each face we detected.
std::vector<full_object_detection> shapes;
for (unsigned long j = ; j < dets.size(); ++j)
{
full_object_detection shape = sp(img, dets[j]);
cout << "number of parts: "<< shape.num_parts() << endl;
cout << "pixel position of first part: " << shape.part() << endl;
cout << "pixel position of second part: " << shape.part() << endl;
// You get the idea, you can get all the face part locations if
// you want them. Here we just store them in shapes so we can
// put them on the screen.
shapes.push_back(shape);
} // Now let's view our face poses on the screen.
win.clear_overlay();
win.set_image(img);
win.add_overlay(render_face_detections(shapes)); // We can also extract copies of each face that are cropped, rotated upright,
// and scaled to a standard size as shown here:
dlib::array<array2d<rgb_pixel> > face_chips;
extract_image_chips(img, get_face_chip_details(shapes), face_chips);
win_faces.set_image(tile_images(face_chips)); cout << "Hit enter to process the next image..." << endl;
cin.get();
}
}
catch (exception& e)
{
cout << "\nexception thrown!" << endl;
cout << e.what() << endl;
}
}

Facial landmark detection - 人脸关键点检测的更多相关文章

  1. OpenCV Facial Landmark Detection 人脸关键点检测

    Opencv-Facial-Landmark-Detection 利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Note: OpenCV3.4 ...

  2. Facial Landmark Detection

    源地址:http://www.learnopencv.com/facial-landmark-detection/#comment-2471797375 OCTOBER 18, 2015 BY SAT ...

  3. OpenCV实战:人脸关键点检测(FaceMark)

    Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author:    Amusi Date:       2018-03-20 ...

  4. 机器学习进阶-人脸关键点检测 1.dlib.get_frontal_face_detector(构建人脸框位置检测器) 2.dlib.shape_predictor(绘制人脸关键点检测器) 3.cv2.convexHull(获得凸包位置信息)

    1.dlib.get_frontal_face_detector()  # 获得人脸框位置的检测器, detector(gray, 1) gray表示灰度图, 2.dlib.shape_predict ...

  5. dlib人脸关键点检测的模型分析与压缩

    本文系原创,转载请注明出处~ 小喵的博客:https://www.miaoerduo.com 博客原文(排版更精美):https://www.miaoerduo.com/c/dlib人脸关键点检测的模 ...

  6. 用keras实现人脸关键点检测(2)

    上一个代码只能实现小数据的读取与训练,在大数据训练的情况下.会造内存紧张,于是我根据keras的官方文档,对上一个代码进行了改进. 用keras实现人脸关键点检测 数据集:https://pan.ba ...

  7. keras实现简单CNN人脸关键点检测

    用keras实现人脸关键点检测 改良版:http://www.cnblogs.com/ansang/p/8583122.html 第一步:准备好需要的库 tensorflow  1.4.0 h5py ...

  8. Opencv与dlib联合进行人脸关键点检测与识别

    前言 依赖库:opencv 2.4.9 /dlib 19.0/libfacedetection 本篇不记录如何配置,重点在实现上.使用libfacedetection实现人脸区域检测,联合dlib标记 ...

  9. opencv+python+dlib人脸关键点检测、实时检测

    安装的是anaconde3.python3.7.3,3.7环境安装dlib太麻烦, 在anaconde3中新建环境python3.6.8, 在3.6环境下安装dlib-19.6.1-cp36-cp36 ...

随机推荐

  1. 【Excle数据透视表】如何水平并排显示报表筛选区域的字段

    原始效果 目标效果 解决方案 设置数据透视表"在报表区域筛选显示字段"为"水平并排" 步骤 方法① 单击数据透视表任意单元格→数据透视表工具→分析→选项→布局和 ...

  2. servlet监听器与事件

    前言 在Servlet 2.4/JSP 2.0中,共同拥有八个Listener接口,六个Event类别. 參考:Servlet中的八大Listener 入门 阅读文件夹 Web监听器 监听器的分类 S ...

  3. handlebars.js基础学习笔记

    最近在帮学校做个课程网站,就有人推荐用jquery+ajax+handlebars做网站前端,刚接触发现挺高大上的,于是就把一些基础学习笔记记录下来啦. 1.引用文件: jquery.js文件下载:h ...

  4. C#中的里氏替换原则

    里氏转换原则 子类可以赋值给父类对象 父类对象可以强制转化为对应的子类对象 里氏替换原则直观理解就是"子类是父类",反过来就说不通了. 就像男人是人对的,但人是男人就不对了. 这样 ...

  5. ASP.NET CORE RAZOR :在 ASP.NET Core 中开始使用 Razor Pages

    来自:https://docs.microsoft.com/zh-cn/aspnet/core/tutorials/razor-pages/razor-pages-start 系统必备安装以下组件:. ...

  6. eclipse / ADT(Android Develop Tool) 一些方便的初始设置

      1.设置编辑窗口的背景色eclipse的主编辑窗口的背景色,默认为白色,个人感觉太亮,推荐保护视力的“墨绿色”,当然也可以根据个人喜好更改,如下图 2.主编辑窗口的字体字号等,也可以根据自己的爱好 ...

  7. 【hadoop之翊】——windows 7使用eclipse下hadoop应用开发环境搭建

    由于一些缘故,这节内容到如今才写.事实上弄hadoop有一段时间了,能够编写一些小程序了,今天来还是来说说环境的搭建.... 说明一下:这篇文章的步骤是接上一篇的hadoop文章的:http://bl ...

  8. nginx 根据参数选择文档根目录

    server  {    listen       80;    server_name  testmanage.h5.91wan.com;    index index.html index.htm ...

  9. PHP array_walk() 函数

    定义和用法 array_walk() 函数对数组中的每个元素应用用户自定义函数.在函数中,数组的键名和键值是参数. <?php function myfunction($value,$key,$ ...

  10. ArrayList add remove 代码分析

    Add 首次add 元素需要对数组进行扩容(初始化Capacity 10, 第二次扩容10>>1 为5, 第三次扩容15>>1 为7), 每次扩容之前长度的1.5倍,当add ...