Facial landmark detection  (Facial keypoints detection)

OpenSourceLibrary: DLib

Project Home:  http://dlib.net/

Git address:     https://github.com/davisking/dlib.git

Example file:    git/dlib/examples/face_landmark_detection_ex.cpp

 #include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/image_processing/render_face_detections.h>
#include <dlib/image_processing.h>
#include <dlib/gui_widgets.h>
#include <dlib/image_io.h>
#include <iostream> using namespace dlib;
using namespace std; // ---------------------------------------------------------------------------------------- int main(int argc, char** argv)
{
try
{
// This example takes in a shape model file and then a list of images to
// process. We will take these filenames in as command line arguments.
// Dlib comes with example images in the examples/faces folder so give
// those as arguments to this program.
if (argc == )
{
cout << "Call this program like this:" << endl;
cout << "./face_landmark_detection_ex shape_predictor_68_face_landmarks.dat faces/*.jpg" << endl;
cout << "\nYou can get the shape_predictor_68_face_landmarks.dat file from:\n";
cout << "http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2" << endl;
return ;
} // We need a face detector. We will use this to get bounding boxes for
// each face in an image.
frontal_face_detector detector = get_frontal_face_detector();
// And we also need a shape_predictor. This is the tool that will predict face
// landmark positions given an image and face bounding box. Here we are just
// loading the model from the shape_predictor_68_face_landmarks.dat file you gave
// as a command line argument.
shape_predictor sp;
deserialize(argv[]) >> sp; image_window win, win_faces;
// Loop over all the images provided on the command line.
for (int i = ; i < argc; ++i)
{
cout << "processing image " << argv[i] << endl;
array2d<rgb_pixel> img;
load_image(img, argv[i]);
// Make the image larger so we can detect small faces.
pyramid_up(img); // Now tell the face detector to give us a list of bounding boxes
// around all the faces in the image.
std::vector<rectangle> dets = detector(img);
cout << "Number of faces detected: " << dets.size() << endl; // Now we will go ask the shape_predictor to tell us the pose of
// each face we detected.
std::vector<full_object_detection> shapes;
for (unsigned long j = ; j < dets.size(); ++j)
{
full_object_detection shape = sp(img, dets[j]);
cout << "number of parts: "<< shape.num_parts() << endl;
cout << "pixel position of first part: " << shape.part() << endl;
cout << "pixel position of second part: " << shape.part() << endl;
// You get the idea, you can get all the face part locations if
// you want them. Here we just store them in shapes so we can
// put them on the screen.
shapes.push_back(shape);
} // Now let's view our face poses on the screen.
win.clear_overlay();
win.set_image(img);
win.add_overlay(render_face_detections(shapes)); // We can also extract copies of each face that are cropped, rotated upright,
// and scaled to a standard size as shown here:
dlib::array<array2d<rgb_pixel> > face_chips;
extract_image_chips(img, get_face_chip_details(shapes), face_chips);
win_faces.set_image(tile_images(face_chips)); cout << "Hit enter to process the next image..." << endl;
cin.get();
}
}
catch (exception& e)
{
cout << "\nexception thrown!" << endl;
cout << e.what() << endl;
}
}

Facial landmark detection - 人脸关键点检测的更多相关文章

  1. OpenCV Facial Landmark Detection 人脸关键点检测

    Opencv-Facial-Landmark-Detection 利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Note: OpenCV3.4 ...

  2. Facial Landmark Detection

    源地址:http://www.learnopencv.com/facial-landmark-detection/#comment-2471797375 OCTOBER 18, 2015 BY SAT ...

  3. OpenCV实战:人脸关键点检测(FaceMark)

    Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author:    Amusi Date:       2018-03-20 ...

  4. 机器学习进阶-人脸关键点检测 1.dlib.get_frontal_face_detector(构建人脸框位置检测器) 2.dlib.shape_predictor(绘制人脸关键点检测器) 3.cv2.convexHull(获得凸包位置信息)

    1.dlib.get_frontal_face_detector()  # 获得人脸框位置的检测器, detector(gray, 1) gray表示灰度图, 2.dlib.shape_predict ...

  5. dlib人脸关键点检测的模型分析与压缩

    本文系原创,转载请注明出处~ 小喵的博客:https://www.miaoerduo.com 博客原文(排版更精美):https://www.miaoerduo.com/c/dlib人脸关键点检测的模 ...

  6. 用keras实现人脸关键点检测(2)

    上一个代码只能实现小数据的读取与训练,在大数据训练的情况下.会造内存紧张,于是我根据keras的官方文档,对上一个代码进行了改进. 用keras实现人脸关键点检测 数据集:https://pan.ba ...

  7. keras实现简单CNN人脸关键点检测

    用keras实现人脸关键点检测 改良版:http://www.cnblogs.com/ansang/p/8583122.html 第一步:准备好需要的库 tensorflow  1.4.0 h5py ...

  8. Opencv与dlib联合进行人脸关键点检测与识别

    前言 依赖库:opencv 2.4.9 /dlib 19.0/libfacedetection 本篇不记录如何配置,重点在实现上.使用libfacedetection实现人脸区域检测,联合dlib标记 ...

  9. opencv+python+dlib人脸关键点检测、实时检测

    安装的是anaconde3.python3.7.3,3.7环境安装dlib太麻烦, 在anaconde3中新建环境python3.6.8, 在3.6环境下安装dlib-19.6.1-cp36-cp36 ...

随机推荐

  1. 读jQuery源码之整体框架分析

    读一个开源框架,大家最想学到的就是设计的思想和实现的技巧.最近读jQuery源码,记下我对大师作品的理解和心得,跟大家分享,权当抛砖引玉. 先附上jQuery的代码结构. (function(){ / ...

  2. 解决:cant&#39;t run &#39;/etc/init.d/rcS&#39;:No such file or directory

    Linux内核启动时提示这种错误:cant't run '/etc/init.d/rcS':No such file or directory 请用vim打开文件:/etc/init.d/rcS 观察 ...

  3. elasticsearch报错syncedb_path

    一般默认syncdb_path在$HOME目录下隐藏文件,也可以自己指定一个文件,记住,这里只能指定文件,不能只写目录input { file { path => "/home/tom ...

  4. POJ1122_FDNY to the Rescue!(逆向建图+最短路树)

    FDNY to the Rescue! Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2368   Accepted: 72 ...

  5. 基于CentOS7的服务器搭建(LAMP环境)

    基于CentOS7的服务器环境搭建(LAMP环境) 一.安装MySQL组件 1.由于在CentOS7中,默认yum安装库中不含有mysql,我们可以下载mysql的分支MariaDB,如果必须要下my ...

  6. HTML5 2D平台游戏开发#9蓄力技

    在很多动作游戏中,玩家操控的角色可以施放出比普通攻击更强力的蓄力技,一般操作为按住攻击键一段时间然后松开,具体效果像下面这张图: 要实现这个操作首先要记录下按键被按住的时间,初始是0: this.sa ...

  7. LNMP环境搭建之php安装,wordpress博客搭建

    LNMP环境搭建之php安装,wordpress博客搭建 一.介绍: 1.什么是CGI CGI全称是"通用网关接口"(Common Gateway Interface),HTTP服 ...

  8. 精通 Android Data Binding

    转自:https://github.com/LyndonChin/MasteringAndroidDataBinding 官方虽然已经给出了教程 - Data Binding Guide (中文版 - ...

  9. 从零开始学android -- CilpDrawable 徐徐展开的风景

    话不多说上图 实现简单利用了这个ClipDrawable clip.xml <?xml version="1.0" encoding="utf-8"?&g ...

  10. unity回调函数范例

    using System.Collections; using System.Collections.Generic; using UnityEngine; public class callback ...