Facial landmark detection  (Facial keypoints detection)

OpenSourceLibrary: DLib

Project Home:  http://dlib.net/

Git address:     https://github.com/davisking/dlib.git

Example file:    git/dlib/examples/face_landmark_detection_ex.cpp

 #include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/image_processing/render_face_detections.h>
#include <dlib/image_processing.h>
#include <dlib/gui_widgets.h>
#include <dlib/image_io.h>
#include <iostream> using namespace dlib;
using namespace std; // ---------------------------------------------------------------------------------------- int main(int argc, char** argv)
{
try
{
// This example takes in a shape model file and then a list of images to
// process. We will take these filenames in as command line arguments.
// Dlib comes with example images in the examples/faces folder so give
// those as arguments to this program.
if (argc == )
{
cout << "Call this program like this:" << endl;
cout << "./face_landmark_detection_ex shape_predictor_68_face_landmarks.dat faces/*.jpg" << endl;
cout << "\nYou can get the shape_predictor_68_face_landmarks.dat file from:\n";
cout << "http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2" << endl;
return ;
} // We need a face detector. We will use this to get bounding boxes for
// each face in an image.
frontal_face_detector detector = get_frontal_face_detector();
// And we also need a shape_predictor. This is the tool that will predict face
// landmark positions given an image and face bounding box. Here we are just
// loading the model from the shape_predictor_68_face_landmarks.dat file you gave
// as a command line argument.
shape_predictor sp;
deserialize(argv[]) >> sp; image_window win, win_faces;
// Loop over all the images provided on the command line.
for (int i = ; i < argc; ++i)
{
cout << "processing image " << argv[i] << endl;
array2d<rgb_pixel> img;
load_image(img, argv[i]);
// Make the image larger so we can detect small faces.
pyramid_up(img); // Now tell the face detector to give us a list of bounding boxes
// around all the faces in the image.
std::vector<rectangle> dets = detector(img);
cout << "Number of faces detected: " << dets.size() << endl; // Now we will go ask the shape_predictor to tell us the pose of
// each face we detected.
std::vector<full_object_detection> shapes;
for (unsigned long j = ; j < dets.size(); ++j)
{
full_object_detection shape = sp(img, dets[j]);
cout << "number of parts: "<< shape.num_parts() << endl;
cout << "pixel position of first part: " << shape.part() << endl;
cout << "pixel position of second part: " << shape.part() << endl;
// You get the idea, you can get all the face part locations if
// you want them. Here we just store them in shapes so we can
// put them on the screen.
shapes.push_back(shape);
} // Now let's view our face poses on the screen.
win.clear_overlay();
win.set_image(img);
win.add_overlay(render_face_detections(shapes)); // We can also extract copies of each face that are cropped, rotated upright,
// and scaled to a standard size as shown here:
dlib::array<array2d<rgb_pixel> > face_chips;
extract_image_chips(img, get_face_chip_details(shapes), face_chips);
win_faces.set_image(tile_images(face_chips)); cout << "Hit enter to process the next image..." << endl;
cin.get();
}
}
catch (exception& e)
{
cout << "\nexception thrown!" << endl;
cout << e.what() << endl;
}
}

Facial landmark detection - 人脸关键点检测的更多相关文章

  1. OpenCV Facial Landmark Detection 人脸关键点检测

    Opencv-Facial-Landmark-Detection 利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Note: OpenCV3.4 ...

  2. Facial Landmark Detection

    源地址:http://www.learnopencv.com/facial-landmark-detection/#comment-2471797375 OCTOBER 18, 2015 BY SAT ...

  3. OpenCV实战:人脸关键点检测(FaceMark)

    Summary:利用OpenCV中的LBF算法进行人脸关键点检测(Facial Landmark Detection) Author:    Amusi Date:       2018-03-20 ...

  4. 机器学习进阶-人脸关键点检测 1.dlib.get_frontal_face_detector(构建人脸框位置检测器) 2.dlib.shape_predictor(绘制人脸关键点检测器) 3.cv2.convexHull(获得凸包位置信息)

    1.dlib.get_frontal_face_detector()  # 获得人脸框位置的检测器, detector(gray, 1) gray表示灰度图, 2.dlib.shape_predict ...

  5. dlib人脸关键点检测的模型分析与压缩

    本文系原创,转载请注明出处~ 小喵的博客:https://www.miaoerduo.com 博客原文(排版更精美):https://www.miaoerduo.com/c/dlib人脸关键点检测的模 ...

  6. 用keras实现人脸关键点检测(2)

    上一个代码只能实现小数据的读取与训练,在大数据训练的情况下.会造内存紧张,于是我根据keras的官方文档,对上一个代码进行了改进. 用keras实现人脸关键点检测 数据集:https://pan.ba ...

  7. keras实现简单CNN人脸关键点检测

    用keras实现人脸关键点检测 改良版:http://www.cnblogs.com/ansang/p/8583122.html 第一步:准备好需要的库 tensorflow  1.4.0 h5py ...

  8. Opencv与dlib联合进行人脸关键点检测与识别

    前言 依赖库:opencv 2.4.9 /dlib 19.0/libfacedetection 本篇不记录如何配置,重点在实现上.使用libfacedetection实现人脸区域检测,联合dlib标记 ...

  9. opencv+python+dlib人脸关键点检测、实时检测

    安装的是anaconde3.python3.7.3,3.7环境安装dlib太麻烦, 在anaconde3中新建环境python3.6.8, 在3.6环境下安装dlib-19.6.1-cp36-cp36 ...

随机推荐

  1. 微软认知服务:QnA Maker使用示例

    简介 QnA Maker 从用户提供的内容(包括 FAQ URL.文档和编辑内容)中提取所有可能存在的问答对:利用易于使用的界面编辑.删除和添加问答对,然后将知识库作为 API 终结点进行发布:QnA ...

  2. 转:使用rsync在linux(服务端)与windows(客户端)之间同步

    转自:http://blog.csdn.net/old_imp/article/details/8826396 一 在linux(我用的是centos系统)上安装rsync和xinetd前先查看lin ...

  3. Android各种模拟器使用笔记

    [√]天天模拟器 优点: 缺点: 个人经验 ADB 版本过低的解决办法 去启动时的广告方法 去除多余进程方法 ADB无法连接到模拟器 原因分析: 解决方案: 安装APP(APK)时非常非常慢TTMNQ ...

  4. spring源码解析之IOC容器(二)------加载和注册

    上一篇跟踪了IOC容器对配置文件的定位,现在我们继续跟踪代码,看看IOC容器是怎么加载和注册配置文件中的信息的.开始之前,首先我们先来了解一下IOC容器所使用的数据结构-------BeanDefin ...

  5. [译]GLUT教程 - 笔划字体

    Lighthouse3d.com >> GLUT Tutorial >> Fonts >> Stroke Fonts 笔划字体是用线条生成的.跟位图字体相反,笔划字 ...

  6. Android Java 线程池 ThreadPoolExecutor源代码篇

    线程池简单点就是任务队列+线程组成的. 接下来我们来简单的了解下ThreadPoolExecutor的源代码. 先看ThreadPoolExecutor的简单类图,对ThreadPoolExecuto ...

  7. cocos2dx游戏 地图

    #include "HelloWorld.h" USING_NS_CC; CCScene* MyHelloWorld::scene() { // 'scene' is an aut ...

  8. MIC的异步传输

    关于signal和wait,属于异步传输的语法,即CPU端无需等待offload语句返回,即可异步运行下面的代码.一般用于启动MIC代码段后,并发执行CPU代码,达到同步执行的目的.另外一种用法是使用 ...

  9. C# 中安全代码与不安全代码

    C# 中安全代码与不安全代码 P/Invoke 非托管代码需要在unsafe块中书写. using System; using System.Collections.Generic; using Sy ...

  10. php在IIS上put,delete请求报404

    方法一:配置C:\Windows\System32\inetsrv\Config\applicationHost.conf的put,delete 方法二:网传最广之方法,修改项目的web.config ...