HDU 2767 Proving Equivalences (强联通)
pid=2767">http://acm.hdu.edu.cn/showproblem.php?pid=2767
Proving Equivalences
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2926 Accepted Submission(s): 1100
Let A be an n × n matrix. Prove that the following statements are equivalent:
1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.
The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the
four statements are equivalent.
Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a
lot more work than just proving four implications!
I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
2
4 0
3 2
1 2
1 3
4
2
题意:
要证明等价性(要求全部命题都是等价的),现已给出部分证明(u->v),问最少还需多少步才干完毕目标。
分析:
我们的目标是(没有蛀牙)使得整个图是强联通的,已经有部分有向边u->v。我们先用强联通缩点,得到一个有向无环图,设入度为0的点有a个,出度为0的点有b个。我们仅仅要max(a,b)步就能完毕目标(数学归纳法可证)。
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<ctime>
#include<cctype>
#include<cmath>
#include<string>
#include<cstring>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<map>
#include<set>
#define sqr(x) ((x)*(x))
#define LL long long
#define itn int
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
#define eps 1e-10
#define maxm 50000
#define maxn 20007 using namespace std; int in[maxn],out[maxn];
int fir[maxn];
int u[maxm],v[maxm],nex[maxm];
int sccno[maxn],pre[maxn],low[maxn];
int st[maxn],top;
int scc_cnt,dfs_clock;
int n,m; void tarjan_dfs(int _u)
{
pre[_u]=low[_u]=++dfs_clock;
st[++top]=_u;
for (int e=fir[_u];~e;e=nex[e])
{
int _v=v[e];
if (!pre[_v])
{
tarjan_dfs(_v);
low[_u]=min(low[_u],low[_v]);
}
else
{
if (!sccno[_v])
{
low[_u]=min(low[_u],pre[_v]);
}
}
} if (pre[_u]==low[_u])
{
++scc_cnt;
while (true)
{
int x=st[top--];
sccno[x]=scc_cnt;
if (x==_u) break;
}
}
} void find_scc()
{
scc_cnt=dfs_clock=0;top=-1;
memset(pre,0,sizeof pre);
memset(sccno,0,sizeof sccno);
for (int i=1;i<=n;i++)
{
if (!pre[i]) tarjan_dfs(i);
}
} int main()
{
#ifndef ONLINE_JUDGE
freopen("/home/fcbruce/文档/code/t","r",stdin);
#endif // ONLINE_JUDGE int T_T;
scanf("%d",&T_T);
while (T_T--)
{ scanf("%d %d",&n,&m);
memset(fir,-1,sizeof fir);
for (itn i=0;i<m;i++)
{
scanf("%d %d",&u[i],&v[i]);
nex[i]=fir[u[i]];
fir[u[i]]=i;
} find_scc(); if (scc_cnt==1)
{
printf("%d\n",0);
continue;
} memset(in,0,sizeof in);
memset(out,0,sizeof out);
for (int i=0;i<m;i++)
{
if (sccno[u[i]]==sccno[v[i]]) continue; in[sccno[v[i]]]++;
out[sccno[u[i]]]++;
} int a=0,b=0;
for (itn i=1;i<=scc_cnt;i++)
{
if (in[i]==0) a++;
if (out[i]==0) b++;
} printf("%d\n",max(a,b));
} return 0;
}
HDU 2767 Proving Equivalences (强联通)的更多相关文章
- HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)
Consider the following exercise, found in a generic linear algebra textbook. Let A be an n × n matri ...
- hdu 2767 Proving Equivalences
Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...
- HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 2767 Proving Equivalences (Tarjan)
Proving Equivalences Time Limit : 4000/2000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other ...
- hdu 2767 Proving Equivalences(tarjan缩点)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:问最少加多少边可以让所有点都相互连通. 题解:如果强连通分量就1个直接输出0,否者输出入度 ...
- hdu 2767 Proving Equivalences 强连通缩点
给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...
- HDU 2767:Proving Equivalences(强连通)
题意: 一个有向图,问最少加几条边,能让它强连通 方法: 1:tarjan 缩点 2:采用如下构造法: 缩点后的图找到所有头结点和尾结点,那么,可以这么构造:把所有的尾结点连一条边到头结点,就必然可以 ...
- HDU 2767-Proving Equivalences(强联通+缩点)
题目地址:pid=2767">HDU 2767 题意:给一张有向图.求最少加几条边使这个图强连通. 思路:先求这张图的强连通分量.假设为1.则输出0(证明该图不须要加边已经是强连通的了 ...
- hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】
Proving Equivalences Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
随机推荐
- codeforces838D - Airplane Arrangements
太妙啦! 我们把座位摆成一个环,在添加另一个座位,表示坐了这个位置就会有人生气,那么我们现在要求的就是没人坐它的方案数Ans,但是这个并不好求,我们发现对于每个位置,它们的Ans都是一样的,而且Ans ...
- fastjson对json字符串JSONObject和JSONArray互相转换操作示例
2017-03-25 直接上代码: package com.tapt.instance; import com.alibaba.fastjson.JSON; import com.alibaba.fa ...
- Semaphore built from mutex in C++11
#include <mutex> #include <condition_variable> using namespace std; class semaphore{ pri ...
- CodeForces - 789B B. Masha and geometric depression---(水坑 分类讨论)
CodeForces - 789B 当时题意理解的有点偏差,一直wa在了14组.是q等于0的时候,b1的绝对值大于l的时候,当b1的绝对值大于l的时候就应该直接终端掉,不应该管后面的0的. 题意告诉你 ...
- CodeForces Round #403 (Div.2) A-F
精神不佳,选择了在场外同步划水 没想到实际做起来手感还好,早知道就报名了…… 该打 未完待续233 A. Andryusha and Socks 模拟,模拟大法好.注意每次是先判断完能不能收进柜子,再 ...
- OpenCV 2.4.9 学习笔记(3)—— OpenCV自动为输出数组(矩阵)分配内存
OpenCV大部分时候会为OpenCV方法中的输出数据(方法的参数)自动分配内存,所以如果一个方法的参数有一个或者多个输入数组(cv::Mat 实例)和一些输出数组时,OpenCV会自动为输出数组分配 ...
- 获得NOTEPAD++ Download Manager的所有下载列表的内容的au3脚本
;~ 获得NOTEPAD++ Download Manager的所有下载列表的内容的au3脚本 ;~ 作者: 鹏程万里 ;~ Email:aprial@163.com ;~ 创建日期: 2014年11 ...
- Request的Body只能读取一次解决方法
一.需要一个类继承HttpServletRequestWrapper,该类继承了ServletRequestWrapper并实现了HttpServletRequest, 因此它可作为request在F ...
- hdu 3635(并查集)
Dragon Balls Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- EntityFramework之多对多关系(四)
上篇介绍了一对多关系,下面介绍下多对多关系代码编写. 1.新建model实体,User是用户类,Role是角色类,由于是多对多关系,必须得有一个中间类,所以产生了UserRole类 public cl ...