CF446A DZY Loves Sequences 简单dp
DZY has a sequence a, consisting of n integers.
We'll call a sequence ai, ai + 1, ..., aj (1 ≤ i ≤ j ≤ n) a subsegment of the sequence a. The value (j - i + 1) denotes the length of the subsegment.
Your task is to find the longest subsegment of a, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing.
You only need to output the length of the subsegment you find.
The first line contains integer n (1 ≤ n ≤ 105). The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).
In a single line print the answer to the problem — the maximum length of the required subsegment.
6
7 2 3 1 5 6
5
You can choose subsegment a2, a3, a4, a5, a6 and change its 3rd element (that is a4) to 4.
问最多修改一个数字,序列可获得地最大严格递增字段长度为多大;
考虑dp;
dp1 表示以 i 位置结尾的最长子段长度;
dp2 表示以 i 位置开头的最长子段长度;
特判一下当 n=1时,长度为1;
考虑拼接:当 x[ i+1 ]>=2+ x[ i-1 ]时,那么改变 x[ i ]即可拼接子段
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n;
int x[maxn]; int main() {
//ios::sync_with_stdio(0);
cin >> n;
vector<int>dp1(maxn, 1);
vector<int>dp2(maxn, 1);
for (int i = 0; i <= n; i++)dp1[i] = dp2[i] = 1;
for (int i = 0; i < n; i++)rdint(x[i]);
if (n < 2) {
cout << 1 << endl; return 0;
}
for (int i = 1; i < n; i++)
dp1[i] = (x[i] > x[i - 1]) ? dp1[i - 1] + 1 : 1;
for (int i = n - 2; i >= 0; i--)
dp2[i] = (x[i + 1] > x[i]) ? dp2[i + 1] + 1 : 1;
int ans = 0;
for (int i = 1; i < n; i++)ans = max(ans, dp1[i - 1] + 1);
for (int i = 0; i < n; i++)ans = max(dp2[i + 1] + 1, ans);
for (int i = 1; i <= n - 1; i++) { if (x[i + 1] - x[i - 1] >= 2) {
ans = max(ans, dp1[i - 1] + 1 + dp2[i + 1]);
}
}
cout << ans << endl;
return 0;
}
CF446A DZY Loves Sequences 简单dp的更多相关文章
- cf446A DZY Loves Sequences
A. DZY Loves Sequences time limit per test 1 second memory limit per test 256 megabytes input standa ...
- codeforces#FF DIV2C题DZY Loves Sequences(DP)
题目地址:http://codeforces.com/contest/447/problem/C C. DZY Loves Sequences time limit per test 1 second ...
- Codeforces 447 C DZY Loves Sequences【DP】
题意:给出一列数,在这个序列里面找到一个连续的严格上升的子串,现在可以任意修改序列里面的一个数,问得到的子串最长是多少 看的题解,自己没有想出来 假设修改的是a[i],那么有三种情况, 1.a[i]& ...
- Codeforces 446A. DZY Loves Sequences (线性DP)
<题目链接> 题目大意: 给定一个长度为$n$的序列,现在最多能够改变其中的一个数字,使其变成任意值.问你这个序列的最长严格上升子段的长度是多少. #include <bits/st ...
- CodeForces - 446A DZY Loves Sequences(dp)
题意:给定一个序列a,求最长的连续子序列b的长度,在至多修改b内一个数字(可修改为任何数字)的条件下,使得b严格递增. 分析: 1.因为至多修改一个数字,假设修改a[i], 2.若能使a[i] < ...
- DP Codeforces Round #FF (Div. 1) A. DZY Loves Sequences
题目传送门 /* DP:先用l,r数组记录前缀后缀上升长度,最大值会在三种情况中产生: 1. a[i-1] + 1 < a[i+1],可以改a[i],那么值为l[i-1] + r[i+1] + ...
- Codeforces Round #FF 446A DZY Loves Sequences
预处理出每一个数字能够向后延伸多少,然后尝试将两段拼起来. C. DZY Loves Sequences time limit per test 1 second memory limit per t ...
- Codeforces 447C - DZY Loves Sequences
447C - DZY Loves Sequences 思路:dp 代码: #include<bits/stdc++.h> using namespace std; #define ll l ...
- Codeforces Round #FF (Div. 2):C. DZY Loves Sequences
C. DZY Loves Sequences time limit per test 1 second memory limit per test 256 megabytes input standa ...
随机推荐
- centos 静态拨号
本人系统centos6.5:虚拟机太丑,固ssh. centos的与联网相关的配置文件在 $ /etc/sysconfig/network-scripts DHCP方式-联网 打开文件 $ vim / ...
- PS 滤镜——水波 water wave
%%%% Water wave %%%% 制作水波效果 clc; clear all; close all; addpath('E:\PhotoShop Algortihm\Image Process ...
- 【遍历二叉树】02二叉树的中序遍历【Binary Tree Inorder Traversal】
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 给定一个二叉树,返回他的中序遍历的 ...
- 51nod 1149 Pi的递推式 组合数
题目大意: \(F(x) = 1 (0 \leq x < 4)\) \(F(x) = F(x-1) + F(x-\pi) (4 \leq x)\) 给定\(n\),求\(F(n)\) 题解: 我 ...
- w3c上的SQL 教程---基本语法 语句学习
SQL 教程路径:http://www.w3school.com.cn/sql/index.asp
- sessionStorage,localStorage,cookies
1 HTML5的Storage主要分为两种:localStorage与sessionStorage,这两者主要在生命周期上有较明显的差别,localStorage的生命周期较长,原则上要等到透过Jav ...
- keepalive安装和配置
1.下载安装包并解压 sudo wget http://www.keepalived.org/software/keepalived-1.2.13.tar.gz tar zxvf keepalived ...
- [转]Unity3D学习笔记(四)天空、光晕和迷雾
原文地址:http://bbs.9ria.com/thread-186942-1-1.html 作者:江湖风云 六年前第一次接触<魔兽世界>的时候,被其绚丽的画面所折服,一个叫做贫瘠之地的 ...
- JVM类加载(4)—加载器
定义: 虚拟机设计团队把类加载阶段中“通过一个类的全限定名来获取描述此类的二进制字节流”这个动作放到虚拟机外部去实现,以便让应用程序自己决定如何去获取所需要的类.实现这个动作的代码模块称之为“类加载器 ...
- linux strace-跟踪进程的系统调用或是信号产生情况,lstrace-跟踪己丑年调用库函数情况,进程跟踪调试命令
本工具可以用来做大多数排除,比如mount一个NFS,很慢,找不出原因,我们可以使用strace命令来跟中mount这个经常所有的调用过程. strace 命令是一种强大的工具,它能够显示所有由用户空 ...