CF446A DZY Loves Sequences 简单dp
DZY has a sequence a, consisting of n integers.
We'll call a sequence ai, ai + 1, ..., aj (1 ≤ i ≤ j ≤ n) a subsegment of the sequence a. The value (j - i + 1) denotes the length of the subsegment.
Your task is to find the longest subsegment of a, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing.
You only need to output the length of the subsegment you find.
The first line contains integer n (1 ≤ n ≤ 105). The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).
In a single line print the answer to the problem — the maximum length of the required subsegment.
6
7 2 3 1 5 6
5
You can choose subsegment a2, a3, a4, a5, a6 and change its 3rd element (that is a4) to 4.
问最多修改一个数字,序列可获得地最大严格递增字段长度为多大;
考虑dp;
dp1 表示以 i 位置结尾的最长子段长度;
dp2 表示以 i 位置开头的最长子段长度;
特判一下当 n=1时,长度为1;
考虑拼接:当 x[ i+1 ]>=2+ x[ i-1 ]时,那么改变 x[ i ]即可拼接子段
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n;
int x[maxn]; int main() {
//ios::sync_with_stdio(0);
cin >> n;
vector<int>dp1(maxn, 1);
vector<int>dp2(maxn, 1);
for (int i = 0; i <= n; i++)dp1[i] = dp2[i] = 1;
for (int i = 0; i < n; i++)rdint(x[i]);
if (n < 2) {
cout << 1 << endl; return 0;
}
for (int i = 1; i < n; i++)
dp1[i] = (x[i] > x[i - 1]) ? dp1[i - 1] + 1 : 1;
for (int i = n - 2; i >= 0; i--)
dp2[i] = (x[i + 1] > x[i]) ? dp2[i + 1] + 1 : 1;
int ans = 0;
for (int i = 1; i < n; i++)ans = max(ans, dp1[i - 1] + 1);
for (int i = 0; i < n; i++)ans = max(dp2[i + 1] + 1, ans);
for (int i = 1; i <= n - 1; i++) { if (x[i + 1] - x[i - 1] >= 2) {
ans = max(ans, dp1[i - 1] + 1 + dp2[i + 1]);
}
}
cout << ans << endl;
return 0;
}
CF446A DZY Loves Sequences 简单dp的更多相关文章
- cf446A DZY Loves Sequences
A. DZY Loves Sequences time limit per test 1 second memory limit per test 256 megabytes input standa ...
- codeforces#FF DIV2C题DZY Loves Sequences(DP)
题目地址:http://codeforces.com/contest/447/problem/C C. DZY Loves Sequences time limit per test 1 second ...
- Codeforces 447 C DZY Loves Sequences【DP】
题意:给出一列数,在这个序列里面找到一个连续的严格上升的子串,现在可以任意修改序列里面的一个数,问得到的子串最长是多少 看的题解,自己没有想出来 假设修改的是a[i],那么有三种情况, 1.a[i]& ...
- Codeforces 446A. DZY Loves Sequences (线性DP)
<题目链接> 题目大意: 给定一个长度为$n$的序列,现在最多能够改变其中的一个数字,使其变成任意值.问你这个序列的最长严格上升子段的长度是多少. #include <bits/st ...
- CodeForces - 446A DZY Loves Sequences(dp)
题意:给定一个序列a,求最长的连续子序列b的长度,在至多修改b内一个数字(可修改为任何数字)的条件下,使得b严格递增. 分析: 1.因为至多修改一个数字,假设修改a[i], 2.若能使a[i] < ...
- DP Codeforces Round #FF (Div. 1) A. DZY Loves Sequences
题目传送门 /* DP:先用l,r数组记录前缀后缀上升长度,最大值会在三种情况中产生: 1. a[i-1] + 1 < a[i+1],可以改a[i],那么值为l[i-1] + r[i+1] + ...
- Codeforces Round #FF 446A DZY Loves Sequences
预处理出每一个数字能够向后延伸多少,然后尝试将两段拼起来. C. DZY Loves Sequences time limit per test 1 second memory limit per t ...
- Codeforces 447C - DZY Loves Sequences
447C - DZY Loves Sequences 思路:dp 代码: #include<bits/stdc++.h> using namespace std; #define ll l ...
- Codeforces Round #FF (Div. 2):C. DZY Loves Sequences
C. DZY Loves Sequences time limit per test 1 second memory limit per test 256 megabytes input standa ...
随机推荐
- 2018.5.8 Project review
1 .product introduced A. Function requirement (customer) The product function is control the 1KW and ...
- hdu-5652 India and China Origins(二分+bfs判断连通)
题目链接: India and China Origins Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65536/65536 K ...
- C++ 0X 新特性实例(比较常用的) (转)
转自:http://www.cnblogs.com/mrblue/p/3141456.html //array #include <array> void Foo1() { array&l ...
- BZOJ2286 [Sdoi2011]消耗战 和 BZOJ3611 [Heoi2014]大工程
2286: [Sdoi2011]消耗战 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6371 Solved: 2496[Submit][Statu ...
- 【转】 Pro Android学习笔记(二七):用户界面和控制(15):FrameLayout
FrameLayout FrameLayout通常只包含一个控件.如果我们在FrameLayout中设置多个控件,则第二个控件会堆叠在第一个控件上面,如此类推,一层一层地叠上去.下面的例子,我们在Fr ...
- 【转】Pro Android学习笔记(二四):用户界面和控制(12):Style和Theme
目录(?)[-] 静态格式 代码中设定 Style Theme 静态格式 在res/values中设置静态的Style,在资源中设置静态Style可使用的HTML格式有<i> <u& ...
- 【P2P网贷新手入门】详解借款标的种类及其风险
不同于国外的网贷平台以信用借款标为主,在中国,我们投资网贷平台会看到多样借款标,而投资人往往弄不清自己投资的标属于什么类型的标,特点怎么样,风险如何. 抵 押 标 定义:借款人用自己的房屋车辆等实物在 ...
- IIS备份和还原
当我们电脑系统有大量的站点和虚拟目录的时候,电脑因为种种原因需要重做系统,那么重装系统后这些站点我们是否只能一个一个的添加,如果有成百上千个站点呢,任务量可想而知,本文将介绍如何备份和还原window ...
- springMVC绑定json参数之一
一.SpringMVC @RequestBody接收Json对象字符串 以前,一直以为在SpringMVC环境中,@RequestBody接收的是一个Json对象,一直在调试代码都没有成功,后来发现, ...
- Improving Deep Neural Networks 笔记
1 Practical aspects of Deep Learning 1.1 Train/Dev/Test sets 在小样本的机器学习中,可以分为60/20/20. 在大数据训练中,不需要划分很 ...