目录

Calculating a Probability

Model Training

1.Loss function for Logistic Regression

2.Regularization in Logistic Regression

Glossay


Calculating a Probability

Many problems require a probability estimate as output. Logistic regression is an extremely efficient mechanism for calculating probabilities. Practically speaking, you can use the returned probability in either of the following two ways:

  • "As is"

  • Converted to a binary category.

Let's consider how we might use the probability "as is." Suppose we create a logistic regression model to predict the probability that a dog will bark during the middle of the night. We'll call that probability:

p(bark | night)

If the logistic regression model predicts a p(bark | night) of 0.05, then over a year, the dog's owners should be startled awake approximately 18 times:

startled = p(bark | night) * nights

18 ~= 0.05 * 365

In many cases, you'll map the logistic regression output into the solution to a binary classification problem, in which the goal is to correctly predict one of two possible labels (e.g., "spam" or "not spam").

You might be wondering how a logistic regression model can ensure output that always falls between 0 and 1. As it happens, a sigmoid function, produces output having those same characteristics:

If z represents the output of the linear layer of a model trained with logistic regression, then sigmoid(z) will yield a value (a probability) between 0 and 1. 如果 z 表示使用逻辑回归训练的模型的线性层的输出,则 S 型(z) 函数会生成一个介于 0 和 1 之间的值(概率)。

Note that z is also referred to as the log-odds 对数几率 because the inverse of the sigmoid S函数的反函数 states that z can be defined as the log of the probability of the "1" label (e.g., "dog barks") divided by the probability of the "0" label (e.g., "dog doesn't bark"):

Sample logistic regression inference calculation


Suppose we had a logistic regression model with three features that learned the following bias and weights:

b = 1,w1 = 2,w2 = -1,w3 = 5

Further suppose the following feature values for a given example:

x1 = 0,x2 = 10,x3 = 2

Therefore, the log-odds:

b+w1x1+w2x2+w3x3

will be:

(1) + (2)(0) + (-1)(10) + (5)(2) = 1

Consequently, the logistic regression prediction for this particular example will be 0.731:

 Model Training

1.Loss function for Logistic Regression


The loss function for linear regression is squared loss.

The loss function for logistic regression is Log Loss, which is defined as follows:

The equation for Log Loss is closely related to Shannon's Entropy measure from Information Theory.

对数损失函数的方程式与”Shannon 信息论中的熵测量“密切相关。

It is also the negative logarithm of the likelihood function, assuming a Bernoulli distribution of y.

它也是似然函数的负对数(假设“y”属于伯努利分布)。

Indeed, minimizing the loss function yields a maximum likelihood estimate.

最大限度地降低损失函数的值会生成最大的似然估计值。

2.Regularization in Logistic Regression


Regularization is extremely important in logistic regression modeling. Without regularization, the asymptotic nature渐进性 of logistic regression would keep driving loss towards 0 in high dimensions. Consequently, most logistic regression models use one of the following two strategies to dampen model complexity:

  • L2 regularization.

  • Early stopping, that is, limiting the number of training steps or the learning rate.

  • L1 regularization.

Imagine that you assign a unique id to each example, and map each id to its own feature. If you don't specify a regularization function, the model will become completely overfit. That's because the model would try to drive loss to zero on all examples and never get there, driving the weights for each indicator feature to +infinity or -infinity.

This can happen in high dimensional data with feature crosses, when there’s a huge mass of rare crosses that happen only on one example each.当有大量罕见的特征组合且每个样本中仅一个时,包含特征组合的高维度数据会出现这种情况。

Fortunately, using L2 or early stopping will prevent this problem.

Summary

  • Logistic regression models generate probabilities.

  • Log Loss is the loss function for logistic regression.

  • Logistic regression is widely used by many practitioners.

Glossay 

1.sigmoid function:

A function that maps logistic or multinomial regression output (log odds) to probabilities, returning a value between 0 and 1:

where z in logistic regression problems is simply:

z=b+w1x1+w2x2+…wnxn

In other words, the sigmoid function converts z into a probability between 0 and 1.

In some neural networks, the sigmoid function acts as the activation function.

2.binary classification:

A type of classification task that outputs one of two mutually exclusive互斥 classes.

For example, a machine learning model that evaluates email messages and outputs either "spam" or "not spam" is a binary classifier.

3.logistic regression:

A model that generates a probability for each possible discrete label value in classification problems by applying a sigmoid function to a linear prediction.

Although logistic regression is often used in binary classification problems, it can also be used in multi-class classification problems (where it becomes called multi-class logistic regression or multinomial多项 regression).

4.Log Loss:

The loss function used in binary logistic regression二元逻辑回归.

5.log-odds对数几率:

The logarithm of the odds of some event.

If the event refers to a binary probability, then odds refers to the ratio of the probability of success (p) to the probability of failure (1-p).

For example, suppose that a given event has a 90% probability of success and a 10% probability of failure. In this case, odds is calculated as follows:

odds=p/(1-p)=.9/.1=9

The log-odds is simply the logarithm of the odds.

By convention, "logarithm" refers to natural logarithm, but logarithm could actually be any base greater than 1. 按照惯例,“对数”是指自然对数,但对数实际上可以是大于1的任何基数。

Sticking to convention, the log-odds of our example is therefore:

log-odds=ln(9) =2.2

The log-odds are the inverse of the sigmoid function.

学习笔记(七): Logistic Regression的更多相关文章

  1. (转)Qt Model/View 学习笔记 (七)——Delegate类

    Qt Model/View 学习笔记 (七) Delegate  类 概念 与MVC模式不同,model/view结构没有用于与用户交互的完全独立的组件.一般来讲, view负责把数据展示 给用户,也 ...

  2. Learning ROS for Robotics Programming Second Edition学习笔记(七) indigo PCL xtion pro live

    中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS forRobotics Pro ...

  3. Typescript 学习笔记七:泛型

    中文网:https://www.tslang.cn/ 官网:http://www.typescriptlang.org/ 目录: Typescript 学习笔记一:介绍.安装.编译 Typescrip ...

  4. 机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归

    机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018- ...

  5. [ML学习笔记] 回归分析(Regression Analysis)

    [ML学习笔记] 回归分析(Regression Analysis) 回归分析:在一系列已知自变量与因变量之间相关关系的基础上,建立变量之间的回归方程,把回归方程作为算法模型,实现对新自变量得出因变量 ...

  6. python3.4学习笔记(七) 学习网站博客推荐

    python3.4学习笔记(七) 学习网站博客推荐 深入 Python 3http://sebug.net/paper/books/dive-into-python3/<深入 Python 3& ...

  7. Go语言学习笔记七: 函数

    Go语言学习笔记七: 函数 Go语言有函数还有方法,神奇不.这有点像python了. 函数定义 func function_name( [parameter list] ) [return_types ...

  8. iOS 学习笔记七 【博爱手把手教你使用2016年gitHub Mac客户端】

    iOS 学习笔记七 [博爱手把手教你使用gitHub客户端] 第一步:首先下载git客户端 链接:https://desktop.github.com 第二步:fork 大神的代码[这里以我的代码为例 ...

  9. 【opencv学习笔记七】访问图像中的像素与图像亮度对比度调整

    今天我们来看一下如何访问图像的像素,以及如何改变图像的亮度与对比度. 在之前我们先来看一下图像矩阵数据的排列方式.我们以一个简单的矩阵来说明: 对单通道图像排列如下: 对于双通道图像排列如下: 那么对 ...

  10. Linux学习笔记(七) 查询系统

    1.查看命令 (1)man 可以使用 man 命令名称 命令查看某个命令的详细用法,其显示的内容如下: NAME:命令名称 SYNOPSIS:语法 DESCRIPTION:说明 OPTIONS:选项 ...

随机推荐

  1. @async 方法上添加该注解实现异步调用的原理

    在我们使用spring框架的过程中,在很多时候我们会使用@async注解来异步执行某一些方法,提高系统的执行效率.今天我们来探讨下 spring 是如何完成这个功能的. spring 在扫描bean的 ...

  2. vbox和宿主机共享文件夹

    首先,查看vbox安装的ubuntu是否支持vboxsf模块 sudo modprobe vboxsf dmesg | grep vboxsf 如果没有安装,需要安装vboxsf模块:(如果安装了请跳 ...

  3. The program 'unzip' is currently not installed. You can install it by typing:

    linux解压遇到下面问题: The program 'unzip' is currently not installed. You can install it by typing: sudo ap ...

  4. js中快速的访问某个url

    在做项目中经常会遇到这样的需求,自动向后台发送统计日志,也不需要关心返回值,当然了方法有很多,其中一个方法就是使用Ajax. 在这里我要介绍的方法的原理是使用图片,给这个图片符url,这样就会自动的触 ...

  5. ios Lable 添加删除线

    遇到坑了: NSString *goodsPrice = @"230.39"; NSString *marketPrice = @"299.99"; NSStr ...

  6. BZOJ4355: Play with sequence(吉司机线段树)

    题意 题目链接 Sol 传说中的吉司机线段树??感觉和BZOJ冒险那题差不多,就是强行剪枝... 这题最坑的地方在于对于操作1,$C >= 0$, 操作2中需要对0取max,$a[i] > ...

  7. nginx停止后再启动出现: [error] open() "/usr/local/nginx/logs/nginx.pid" failed错误的解决方法

    为了备份数据 手动停止了服务器的nginx 结果启动时报错 nginx: [error] open() "/usr/local/nginx/logs/nginx.pid" fail ...

  8. vim 粘贴复制操作

    原文链接:http://www.cnblogs.com/lansh/archive/2010/08/19/1803378.html vi编辑器有3种模式:命令模式.输入模式.末行模式.掌握这三种模式十 ...

  9. iOS .Crash文件分析处理办法 (利用symbolicatecrash工具处理)

    崩溃分析方式:命令行解析Crash文件 通过Mac自带的命令行工具解析Crash文件需要具备三个文件 symbolicatecrash,Xcode自带的崩溃分析工具,使用这个工具可以更精确的定位崩溃所 ...

  10. MySQL-5.6.30 (OpenLogic CentOS7.2)

    平台: CentOS 类型: 虚拟机镜像 软件包: centos7.2 mysql5.6.30 basic software database linux open source 服务优惠价: 按服务 ...