POJ:2229-Sumsets(完全背包的优化)
题目链接:http://poj.org/problem?id=2229
Sumsets
Time Limit: 2000MS Memory Limit: 200000K
Total Submissions: 21845 Accepted: 8454
Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6
解题心得:
- 问给你一系列2的N次方的数,让你用这些数相加起来等于m,问一共有多少种方法。
- 刚开始看到这个题的时候第一个反应就是青蛙跳台阶的问题(链接),按照这个思路状态转移就出来了。dp[n][m] += dp[n-1][m-k*c[i]],在空间上优化可以使用滚动数组来进行优化。这样还是会TLE,因为没有优化过的完全背包是三重循环,这个时候就需要用到完全背包的优化,完全背包的优化其实很简单,思想就是既然背包有无穷多个,那么直接从小到大开始叠加就行了,会自然叠加到最大,这样就可以省去k个背包的循环,利用的就是k无穷大不用一一进行枚举。可以很简单的看懂优化代码。
没有优化过的完全背包(大概写法):
for(int i=0;i<n;i++) {
for(int k=1;k*c[i] <= n;k++) {
for(int j=m;j>=k*c[i];k--) {
dp[j] += dp[j-k*c[i]];
}
}
}
完全背包的时间优化(大概写法):
for(int i=0;i<n;i++) {
for(int j=c[i];j<=n;j++) {//注意这里是从小到大开始叠加
dp[j] += dp[j-c[i]];
}
}
AC代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = (int) 1e6 + 10;
int n, dp[maxn];
int Mod = (int) 1e9;
int main() {
int T = 1;
while (~scanf("%d", &n)) {
memset(dp, 0, sizeof(dp));
dp[0] = 1;
while (T <= n) {
for (int j = T; j <= n; j++) {
dp[j] += dp[j - T];
dp[j] %= Mod;
}
T <<= 1;
}
printf("%d\n", dp[n]);
return 0;
}
}
POJ:2229-Sumsets(完全背包的优化)的更多相关文章
- poj 2229 Sumsets 完全背包求方案总数
Sumsets Description Farmer John commanded his cows to search for different sets of numbers that sum ...
- poj 2229 【完全背包dp】【递推dp】
poj 2229 Sumsets Time Limit: 2000MS Memory Limit: 200000K Total Submissions: 21281 Accepted: 828 ...
- POJ 2229 Sumsets(技巧题, 背包变形)
discuss 看到有人讲完全背包可以过, 假如我自己做的话, 也只能想到完全背包了 思路: 1. 当 n 为奇数时, f[n] = f[n-1], 因为只需在所有的序列前添加一个 1 即可, 所有的 ...
- poj -2229 Sumsets (dp)
http://poj.org/problem?id=2229 题意很简单就是给你一个数n,然后选2的整数幂之和去组成这个数.问你不同方案数之和是多少? n很大,所以输出后9位即可. dp[i] 表示组 ...
- POJ 1014 Dividing(多重背包, 倍增优化)
Q: 倍增优化后, 还是有重复的元素, 怎么办 A: 假定重复的元素比较少, 不用考虑 Description Marsha and Bill own a collection of marbles. ...
- POJ 2229 Sumsets
Sumsets Time Limit: 2000MS Memory Limit: 200000K Total Submissions: 11892 Accepted: 4782 Descrip ...
- poj 2229 Sumsets(dp)
Sumsets Time Limit : 4000/2000ms (Java/Other) Memory Limit : 400000/200000K (Java/Other) Total Sub ...
- POJ 2229 sumset ( 完全背包 || 规律递推DP )
题意 : 给出一个数 n ,问如果使用 2 的幂的和来组成这个数 n 有多少种不同的方案? 分析 : 完全背包解法 将问题抽象==>有重量分别为 2^0.2^1.2^2…2^k 的物品且每种物 ...
- poj 2229 Sumsets DP
题意:给定一个整数N (1<= N <= 1000000),求出以 N为和 的式子有多少个,式子中的加数只能有2的幂次方组成 如5 : 1+1+1+1+1.1+1+1+2.1+2+2.1+ ...
- poj 2229 Sumsets(dp 或 数学)
Description Farmer John commanded his cows to search . Here are the possible sets of numbers that su ...
随机推荐
- CSS3伪类使用方法实例
有时候在网页设计中会涉及到很多看上去很繁琐的设计图,这时候都会很让人头疼,那么这时候伪类就可以来帮助你解决问题了. 下面有一段实例大家可以参考一下: <!DOCTYPE html> < ...
- UDoc(云平台企业应用级 文档管理产品)
类型: 定制服务 软件包: integrated industry solution collateral 联系服务商 产品详情 解决方案 概要 为企业提供基于云平台企业应用级文档管理产品,尽可能最大 ...
- centos7 mod_gearman 3.0.1 打包rpm
wget https://github.com/sni/mod_gearman/archive/v3.0.1.tar.gz -O /root/rpmbuild/SOURCES/mod_gearman- ...
- Laravel Scheduling Package
Laravel 是在 App\Console\Kernel 类中的 schedule 方法去定义所有的调度任务. iBrand 产品作为一个电商类产品,本身业务需求非常庞大和复杂,全部定义在 sche ...
- 仿照everything写的一个超级速查 原创
http://files.cnblogs.com/files/jacd/%E8%B6%85%E9%80%9F%E6%9F%A5%E6%96%87%E4%BB%B6.zip 速度奇快无比,体积奇小无比, ...
- 07、Spark集群的进程管理
07.Spark集群的进程管理 7.1 概述 Spark standalone集群模式涉及master和worker两个守护进程.master进程是管理节点,worker进程是工作节点.spark提供 ...
- 双网卡(一外一内)都启用,将内网卡默认网关去除即可正常连接Internet
- Jerry Wang诚邀广大SAP同仁免费加入我的知识星球,共同探讨SAP技术问题
大家知道Jerry Wang有一个微信公众号"汪子熙",2017年12月27日,Jerry的这个公众号发布了第一篇文章.到今天2018年10月底为止,正好十个月. 在这10个月的时 ...
- ABI是编译器的开发指南
http://blog.csdn.net/soaringlee_fighting/article/details/70214785 1) ABI: 二进制应用程序接口(Application Bina ...
- 【洛谷2605】[ZJOI2010] 基站选址(线段树维护DP)
点此看题面 大致题意: 有\(n\)个村庄,每个村庄有\(4\)个属性:\(D_i\)表示与村庄\(1\)的距离,\(C_i\)表示建立基站的费用,\(S_i\)表示能将其覆盖的建基站范围,\(W_i ...