题目大意:有$2^n$个人,每相邻的两个人比赛一次。令两个人的编号为$a,b(a\leqslant b)$,若$a\neq 1$,则$a$的人获胜;否则若$b\in S$则$b$获胜,不然$1$获胜。钦定$1$获胜,问可以的开始的顺序的方案数

题解:状压$DP$,令开始的第$i$位的人的编号为$p_i$,发现到只有$\min\limits_{i\in[2^{j-1}+1,2^j]}\{p_i\}(1\leqslant j\leqslant n)$的人会和$1$打,考虑容斥,令$f_{i,j}$为到了要放$S$中的第$i$个人,现在第$k$个段($[2^{k-1}+1,2^k]$)中的最小值在$S$中的状态为$1<<k \& j$,时可以战胜$1$的方案数。(发现一个很优美的东西,$j==已经放置的人数$)

卡点:

C++ Code:

#include <cstdio>
#define N 1 << 16 | 3
const int mod = 1000000007;
int n, m, s[20];
long long fac[N], inv[N];
long long f[17][N], ans, U;
void update(long long &x, long long y) {if ((x += y) >= mod) x -= mod;}
long long C(long long a, long long b) {
if (a < b) return 0;
return fac[a] * inv[b] % mod * inv[a - b] % mod;
}
int main () {
scanf("%d%d", &n, &m); U = 1 << n;
for (int i = 1; i <= m; i++) scanf("%d", s + m - i);
fac[0] = fac[1] = inv[0] = inv[1] = 1;
for (int i = 2; i < U; i++) {
fac[i] = fac[i - 1] * i % mod;
inv[i] = inv[mod % i] * (mod - mod / i) % mod;
}
for (int i = 2; i < U; i++) inv[i] = inv[i - 1] * inv[i] % mod;
f[0][0] = 1;
for (int i = 0; i < m; i++) {
for (int j = 0; j < U; j++) {
update(f[i + 1][j], f[i][j]);
for (int k = 0; k < n; k++) {
if (!(j & (1 << k))) update(f[i + 1][j | 1 << k], f[i][j] * fac[1 << k] % mod * C(U - j - s[i], (1 << k) - 1) % mod);
}
}
}
for (int i = 0; i < U; i++) {
long long tmp = f[m][i] * fac[U - i - 1] % mod;
update(ans, __builtin_parity(i) ? (mod - tmp) : tmp);
}
printf("%lld\n", ans * U % mod);
return 0;
}

[AtCoder ARC093F]Dark Horse的更多相关文章

  1. ARC093F Dark Horse 容斥原理+DP

    题目传送门 https://atcoder.jp/contests/arc093/tasks/arc093_d 题解 由于不论 \(1\) 在哪个位置,一轮轮下来,基本上过程都是相似的,所以不妨假设 ...

  2. arc093F Dark Horse

    我们可以假设1的位置在1,并且依次与右边的区间合并.答案最后乘上2^n即可. 那么需要考虑1所在的区间与另一个区间合并时,另一个区间的最小值不能为特殊的. 直接求解很难,考虑容斥,钦定在哪几个位置必定 ...

  3. ARC093F Dark Horse 【容斥,状压dp】

    题目链接:gfoj 神仙计数题. 可以转化为求\(p_1,p_2,\ldots,p_{2^n}\),使得\(b_i=\min\limits_{j=2^i+1}^{2^{i+1}}p_j\)都不属于\( ...

  4. 【arc093f】Dark Horse(容斥原理,动态规划,状态压缩)

    [arc093f]Dark Horse(容斥原理,动态规划,状态压缩) 题面 atcoder 有 \(2^n\) 名选手,编号为 \(1\) 至 \(2^n\) .现在这 \(2^n\) 名选手将进行 ...

  5. ARC 093 F Dark Horse 容斥 状压dp 组合计数

    LINK:Dark Horse 首先考虑1所在位置. 假设1所在位置在1号点 对于此时剩下的其他点的方案来说. 把1移到另外一个点 对于刚才的所有方案来说 相对位置不变是另外的方案. 可以得到 1在任 ...

  6. Atcoder Regular Contest 093 D - Dark Horse(组合数学+状压 dp)

    Atcoder 题面传送门 & 洛谷题面传送门 常规题,简单写写罢((( 首先 \(1\) 的位置是什么不重要,我们不妨钦定 \(1\) 号选手最初就处在 \(1\) 号位置,最后答案乘个 \ ...

  7. ARC093 F - Dark Horse

    https://atcoder.jp/contests/arc093/tasks/arc093_d 题解 先钦定\(1\)号站在第一个位置上,那么他第一轮要和\((2)\)打,第二轮要和\((3,4) ...

  8. ARC093 F Dark Horse——容斥

    题目:https://atcoder.jp/contests/arc093/tasks/arc093_d #include<cstdio> #include<cstring> ...

  9. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

随机推荐

  1. UOJ#179. 线性规划(线性规划)

    描述 提交 自定义测试 这是一道模板题. (这个题现在标程挂了..哪位哥哥愿意提供一下靠谱的标程呀?) 本题中你需要求解一个标准型线性规划: 有 nn 个实数变量 x1,x2,…,xnx1,x2,…, ...

  2. 服务器缺少vcruntime140.dll,无法运行

    Redis用了一段时间,有的时候,调试的时候,RedisDesktop是个不错的工具 当我想在服务器上安装的时候,才发现服务器64位的环境里面运行出错了 百度上有共享dll出来的,但是基本都没法用,虽 ...

  3. laravel查看执行的sql语句

    方法一: 我们有时候想测试一段代码生产的 SQL 语句,比如: 我们想看 App\User::all(); 产生的 SQL 语句,我们简单在 routes.php 做个实验即可: //app/Http ...

  4. 从0开始学习 Git

    1. 什么是Git? Git 是 Linux 发明者 Linus 开发的一款新时代的版本控制系统,那什么是版本控制系统呢?怎么理解?网上一大堆详细的介绍,但是大多枯燥乏味,对于新手也很难理解,这里我只 ...

  5. kivy学习二:做一个查询所在地区身份证前6位的小软件

    经过半个月的尝试,终于成功,记录下来备查! 做完之后发现有很多的问题没有解决,请大佬多批评指教! 强烈建议:学习KIVY的查看官方文档 需要用的知识: 1.字典的相关知识 2.kivy的下拉列表(Dr ...

  6. sigaction函数

    sigaction函数是设置信号处理的接口.比signal函数更健壮 #include <signal.h> int sigaction(int signum, const struct ...

  7. 理解canvas路径

    canvas路径和ps里面的路径差不多,在进行图形绘制时,先绘制出来图形的路径,然后再描边或者填充. canvas路径还有子路径的概念,在某一时刻,canvas之中只能有一条路径存在,Canvas规范 ...

  8. get请求中url传参中文乱码问题

    在项目中经常会遇到中文传参数,在后台接收到乱码问题.那么在遇到这种情况下我们应该怎么进行处理让我们传到后台接收到的参数不是乱码是我们想要接收的到的,下面就是我的一些认识和理解. 一:get请求url中 ...

  9. 模块hashlib和logging

    Python的hashlib提供了常见的摘要算法MD5. 我们以常见的摘要算法MD5为例,计算出一个字符串的MD5值: import hashlib md5=hashlib.md5() md5.upd ...

  10. Struts2---环境搭建及包介绍

    导入jar包 jar包下载地址:http://www.apache.org/官网中选择struts,然后点击download下载.将jar包导入到WEB-INF下的lib文件目录下. asm-5.2. ...