P3390 【模板】矩阵快速幂

题目描述

给定n*n的矩阵A,求A^k

矩阵A的大小为n×m,B的大小为n×k,设C=A×B

则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i,p}×B_{p,j}\)

矩阵乘满足结合律:(AB)C=A(BC)

有一种特殊的矩阵:单位矩阵,它从左上角到右下角的对角线上的元素均为1,除此以外全都为0。它在矩阵乘中相当于数乘中的1,即任何矩阵乘它都等于本身。

code:

#include <iostream>
#include <cstdio>
#include <cstring> #define int long long using namespace std; const int mod=1e9+7; const int wx=117; inline int read(){
int sum=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0'; ch=getchar();}
return sum*f;
} int n,k; struct mat{
int a[wx][wx];
mat(){memset(a,0,sizeof a);}
void e(){for(int i=0;i<=n;i++)a[i][i]=1;}
friend mat operator * (const mat & a,const mat & b){
mat c;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++){
c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j])%mod;
}
}
}
return c;
}
}a,ans; void ksm(mat aa,int b){
ans.e();
while(b){
if(b&1)ans=ans*aa;
aa=aa*aa;
b>>=1;
}
} signed main(){
n=read(); k=read();
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
a.a[i][j]=read();
}
}
ksm(a,k);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
printf("%lld ",ans.a[i][j]);
}
puts("");
}
return 0;
}

模板【洛谷P3390】 【模板】矩阵快速幂的更多相关文章

  1. 【洛谷P3390】矩阵快速幂

    矩阵快速幂 题目描述 矩阵乘法: A[n*m]*B[m*k]=C[n*k]; C[i][j]=sum(A[i][1~n]+B[1~n][j]) 为了便于赋值和定义,我们定义一个结构体储存矩阵: str ...

  2. 洛谷 P1965 转圈游戏 —— 快速幂

    题目:https://www.luogu.org/problemnew/show/P1965 居然真的就只是 ( x + m * 10k % n ) % n 代码如下: #include<ios ...

  3. 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线

    P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...

  4. 3990 [模板]矩阵快速幂 洛谷luogu

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  5. 洛谷P1939【模板】矩阵加速(数列)+矩阵快速幂

    思路: 这个 a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1] (x>3) 可以想成: [a(n) ] [1 0 1] [a(n-1)   ] [a(n-1) ] =    ...

  6. Luogu P3390 【模板】矩阵快速幂&&P1939 【模板】矩阵加速(数列)

    补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一 ...

  7. P3390 【模板】矩阵快速幂

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  8. Luogu P3390 【模板】矩阵快速幂

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  9. 矩阵快速幂模板(pascal)

    洛谷P3390 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格 ...

随机推荐

  1. Java学习之系统高可用性渲染接口日志自动服务降级

    背景:公司都追求系统的高可用性,这里不可用时间就是其中很重要的一个指标,为此在做系统功能升级迭代的过程中如何快速处理异常恢复正常功能极为重要.现在对新增模块的要求是都增加开关,方便快速关闭异常模块,但 ...

  2. 【转】link_to中delete无效的问题解决

    问题一 1.问题描述:点击[删除]链接之后,跳到了show页面,完全没有弹出框提示 <%= link_to "删除", product_path(product.id), : ...

  3. pos机的热敏纸尺寸

    57x50或者是57x30,两个型号宽度都是一样的,只是厚度不一样,前者是厚一点,适合固定机用,后者适合移动POS机用 厚度不是指纸的厚度,而是纸的容量,移动机的纸槽较小只能用57X30的

  4. sql server小知识

    SELECT TOP 10000 * FROM [LogFeedback].[dbo].[ahwater_perf_monitor] order by timestramp desc   降序 asc ...

  5. cookie禁用后非重定向跳转时session的跟踪

  6. 百度Apollo解析——2.log系统

    Apollo中的glog 在Apollo中google glog 被广泛使用,glog 是 google 的一个 c++ 开源日志系统,轻巧灵活,入门简单,而且功能也比较完善. 1. 安装 以下是官方 ...

  7. array_unique() 函数移除数组中的重复的值

    array_unique() 函数移除数组中的重复的值,并返回结果数组. 当几个数组元素的值相等时,只保留第一个元素,其他的元素被删除. 返回的数组中键名不变.

  8. JavaScript toLowerCase() 方法

    定义和用法 toLowerCase() 方法用于把字符串转换为小写. 语法 stringObject.toLowerCase() 返回值 一个新的字符串,在其中 stringObject 的所有大写字 ...

  9. Ajax01 什么是ajax、获取ajax对象、ajax对象的属性和方法、编程步骤、缓存问题、乱码问题

    目录 1 什么是ajax 2 获取ajax对象 3 ajax对象的属性和方法 4 使用ajax的编程步骤 5 缓存问题 6 乱码问题 1 什么是ajax ajax是一种用来改善用户体验的技术,其本质是 ...

  10. 使用java开源包解析ifc并获取数据(树形结构)

     import java.io.File;import java.util.Collection;import java.util.Enumeration;import java.util.HashM ...