[CSP-S模拟测试]:天才绅士少女助手克里斯蒂娜(数学+树状数组)
题目描述

红莉栖想要弄清楚楼下天王寺大叔的显像管电视对“电话微波炉(暂定)”的影响。
选取显像管的任意一个平面,一开始平面内有个$n$电子,初始速度分别为$v_i$,定义飘升系数为
$$\sum \limits_{1\leqslant i<j\leqslant n}|v_i\times v_j|^2$$
由于电视会遭到大叔不同程度的暴击,电子的速度常常会发生变化。也就是说,有两种类型的操作:
$\bullet 1\ p\ x\ y$将$v_p$改为$(x,y)$
$\bullet 2\ l\ r$询问$[l,r]$这段区间内的电子的飘升系数
这么简单的问题红莉栖当然能解决,但是她需要一个人帮忙验证一下结果的正确性。
由于唯一帮得上忙的桶子去找菲利斯了,于是只能拜托你来完成这个任务了。答案对$20170927$取模即可。
输入格式
第一行两个整数$n,m$表示电子个数和询问个数。
接下来$n$行,每行两个整数$x,y$表示$v_i$。
接下来$m$行,每行形如$1\ p\ x\ y$或$2\ l\ r$,分别表示两种操作。
输出格式
对于每个操作$2$,输出一行一个整数表示飘升系数对$20170927$取模的值。
样例
样例输入:
9 5
13052925 5757314
9968857 11135327
13860145 3869873
6912189 3461377
2911603 7061332
6334922 7708411
5505379 5915686
6806727 588727
7603043 15687404
2 1 6
1 7 2602783 18398476
1 8 8636316 19923037
2 2 7
2 2 4
样例输出:
18529202
963126
19167545
数据范围与提示

对于$100\%$的数据,$1\leqslant n,m\leqslant 10^6,0\leqslant x_i,y_i<20170927,1\leqslant l_i\leqslant r_i\leqslant n$。
题解
我依($qing$)稀($chu$)记得波波老师让我出过这道题的数据,就是题面动了一点,时间限制调小了(当时我还是挺慌的,原题$4s$,现在这个时限我的代码都跑不过我的数据……),但是我还是打了,然后它就$A$了……
简单说一下,上面那个鬼畜的$\times$其实是叉积也就是:
$v_1=(x_1,y_1),v_2=(x_2,y_2) \Rightarrow \vec{v_1}\times \vec{v_2}=x_1\times y_2-x_2\times y_1$。
初步是这样的:$\large \begin{array}{ll} ans &=& \sum \limits_{i=l}^r \sum \limits_{j=i+1}^r (v_i \times v_j)^2 \\ &=& \sum \limits_{i=l}^r \sum \limits_{j=i+1}^r (x_iy_j-x_jy_i)^2 \end{array}$
那么我们化简一下上面那个式子即可得到:
$\large \begin{array}{ll} ans &=& \sum \limits_{i=l}^{r} \sum \limits_{j=i+1}^r (x_i^2y_j^2+x_j^2y_i^2-2x_iy_ix_jy_j) \\ &=& \sum \limits_{i=l}^r \sum \limits_{j=i+1}^r x_i^2y_j^2 + \sum \limits_{i=l}^r \sum \limits_{j=i+1}^r x_j^2y_i^2 - \sum \limits_{i=l}^r \sum \limits_{j=i+1}^r 2x_iy_ix_jy_j \\ &=& \sum \limits_{i=l}^r \sum \limits_{j=l}^r [i!=j]\times x_i^2y_j^2 - \sum \limits_{i=l}^r \sum \limits_{j=l}^r [i!=j]\times x_iy_ix_jy_j \\ &=& \sum \limits_{i=l}^r x_i^2 (\sum \limits_{j=l}^r y_j^2 -y_i^2) - (\sum \limits_{i=l}^r x_iy_i (\sum \limits_{j=l}^r x_jy_j - x_iy_i)) \\ &=& \sum \limits_{i=l}^r x_i^2 \sum \limits_{j=l}^r y_j^2 - \sum \limits_{i=l}^r x_i^2y_i^2 - (\sum \limits_{i=l}^r x_iy_i \sum \limits_{j=l}^r x_jy_j - \sum \limits_{i=l}^r x_i^2 y_i^2) \\ &=& \sum \limits_{i=l}^r x_i^2\times \sum \limits_{i=l}^ry_i^2 - (\sum \limits_{i=l}^r x_iy_i)^2\end{array}$
有了这个式子,我们就可以用三个树状数组维护分别维护$\sum \limits_{i=l}^r x_i^2$,$\sum \limits_{i=l}^r y_i^2$,$\sum \limits_{i=l}^r x_iy_i$即可。
时间复杂度:$\Theta((n+m)\log n)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
const int mod=20170927;
int n,m;
long long tr[3][4000001];
pair<long long,long long> e[1000001];
void add(int x,long long val,int id)
{
for(int i=x;i<=n;i+=i&-i)
tr[id][i]=(tr[id][i]+val)%mod;
}
long long query(int x,int id)
{
long long res=0;
for(int i=x;i;i-=i&-i)
res=(res+tr[id][i])%mod;
return res;
}
long long ask(int l,int r,int id)
{
return (query(r,id)-query(l-1,id)+mod)%mod;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%lld%lld",&e[i].first,&e[i].second);
add(i,e[i].first*e[i].first,0);
add(i,e[i].second*e[i].second,1);
add(i,e[i].first*e[i].second,2);
}
while(m--)
{
int op;
scanf("%d",&op);
if(op==1)
{
int p;
long long x,y;
scanf("%d%lld%lld",&p,&x,&y);
add(p,(x*x%mod-e[p].first*e[p].first%mod+mod)%mod,0);
add(p,(y*y%mod-e[p].second*e[p].second%mod+mod)%mod,1);
add(p,(x*y%mod-e[p].first*e[p].second%mod+mod)%mod,2);
e[p]=make_pair(x,y);
}
else
{
int l,r;
scanf("%d%d",&l,&r);
long long res=ask(l,r,0)*ask(l,r,1)%mod,res1=ask(l,r,2);
res=(res-(res1*res1%mod)+mod)%mod;
printf("%lld\n",res);
}
}
return 0;
}
rp++
[CSP-S模拟测试]:天才绅士少女助手克里斯蒂娜(数学+树状数组)的更多相关文章
- csps-s模拟测试60嘟嘟噜,天才绅士少女助手克里斯蒂娜,凤凰院凶真题解
题面:https://www.cnblogs.com/Juve/articles/11625190.html 嘟嘟噜: 约瑟夫问题 第一种递归的容易re,但复杂度较有保证 第二种适用与n大于m的情况 ...
- 【CSP模拟赛】天才绅士少女助手克里斯蒂娜(线段树&读入优化&输出优化)
题面描述 红莉栖想要弄清楚楼下天王寺大叔的显像管电视对“电话微波炉(暂定)”的影响.选取显像管的任意一个平面,一开始平面内有个n电子,初始速度分别为vi,定义飘升系数为 $$\sum_{1\leqsl ...
- [CSP-S模拟测试]:小P的单调数列(树状数组+DP)
题目描述 小$P$最近喜欢上了单调数列,他觉得单调的数列具有非常多优美的性质.经过小$P$复杂的数学推导,他计算出了一个单调增数列的艺术价值等于该数列中所有书的总和.并且以这个为基础,小$P$还可以求 ...
- [CSP-S模拟测试]:Equation(数学+树状数组)
题目描述 有一棵$n$个点的以$1$为根的树,以及$n$个整数变量$x_i$.树上$i$的父亲是$f_i$,每条边$(i,f_i)$有一个权值$w_i$,表示一个方程$x_i+x_{f_i}=w_i$ ...
- 「模拟赛20191019」C 推式子+贪心+树状数组
题目描述 给定一棵\(n\)个点的有根树,根节点编号为\(1\),点有点权. 定义\(d(v)\)表示\(v\)到\(1\)的路径上的边数. 定义\(f(v,u)\)在\(v<u\)且\(v\) ...
- hdoj--1556--Color the ball(模拟&&树状数组)
Color the ball Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- PAT甲题题解-1095. Cars on Campus(30)-(map+树状数组,或者模拟)
题意:给出n个车辆进出校园的记录,以及k个时间点,让你回答每个时间点校园内的车辆数,最后输出在校园内停留的总时间最长的车牌号和停留时间,如果不止一个,车牌号按字典序输出. 几个注意点: 1.如果一个车 ...
- 【洛谷】NOIP提高组模拟赛Day2【动态开节点/树状数组】【双头链表模拟】
U41571 Agent2 题目背景 炎炎夏日还没有过去,Agent们没有一个想出去外面搞事情的.每当ENLIGHTENED总部组织活动时,人人都说有空,结果到了活动日,却一个接着一个咕咕咕了.只有不 ...
- 「模拟赛20180306」回忆树 memory LCA+KMP+AC自动机+树状数组
题目描述 回忆树是一棵树,树边上有小写字母. 一次回忆是这样的:你想起过往,触及心底--唔,不对,我们要说题目. 这题中我们认为回忆是这样的:给定 \(2\) 个点 \(u,v\) (\(u\) 可能 ...
随机推荐
- JQuery关于span标签的取值赋值
span取值赋值方法有别于一般的页面元素.JQ://赋值$("#spanid").html("hello world") //取值$("#spanid ...
- ceph部署-集群建立
一.配置storage集群1.建立集群管理目录(管理配置文件,密钥)mkdir ceph-clustercd ceph-cluster/ 2.创建一个新集群(需要先将主机名加入/etc/hosts 必 ...
- PyTorch笔记之 Dataset 和 Dataloader
一.简介 在 PyTorch 中,我们的数据集往往会用一个类去表示,在训练时用 Dataloader 产生一个 batch 的数据 https://pytorch.org/tutorials/begi ...
- mysql修改库、表、字段 字符集,中文排序
查看字段编码: show full columns from t2;show variables like '%character%';show variables like 'collation_% ...
- MySQL学习笔记(上)
在进行SQL注入原理的剖析的时候,对MySQL数据库掌握薄弱,参照菜鸟教程的MySQL教程速刷一遍MySQL 关于MySQL MySQL是最流行的关系型数据库管理系统,在WEB方面MySQL是最好的R ...
- SCUT - 131 - 小P玩游戏II - 贪心 - 平衡树
https://scut.online/p/131 首先假如钦定了一群人去打怪兽,那么可以把主要的任务都丢给b最大的人去打,这样不会更差.然后考虑枚举这个b最大的人,其他人陪练.一开始就是ai+k*b ...
- 使用OFBIZ的理由和不使用OFBIZ的理由
1 使用OFBIZ的理由 1.1 什么是OFBIZ OFBIZ是由Sourceforge维护的一个最著名的开源项目之一,提供创建基于最新J2EE/XML规范和技术标准,构建大型企业级.跨平台.跨数据库 ...
- 【问题解决方案】GitHub上克隆项目到本地
说明: 克隆线上项目到本地,可以直接clone克隆,不必再自己建文件夹啊,初始化啊. 命令: git clone + 想要克隆的项目的地址 END
- Canvas和SVG的比较
Canvas 和 SVG 都允许您在浏览器中创建图形,但是它们在根本上是不同的. SVG SVG 是一种使用 XML 描述 2D 图形的语言. SVG 基于 XML,这意味着 SVG DOM 中的每个 ...
- HBase构架原理
HBase的概念: HBase在生态圈位置 HBase与HDFS对比 HBase与关系型数据库的比较 HBase表的特点: 4)任意模式:每一行都有一个可排序的主键和任意多的列,列可以根据自己的需要动 ...