Improving Head Pose Estimation with a Combined Loss and Bounding Box Margin Adjustment

简介

本文提出了一种网络结构,不是利用分类和回归loss加权求和,提出对数据集进行裁剪来提高准确率的方法,在很多数据集上取得了SOTA。

网络结构

从图可以看出,使用的是resnet50作为backbone,然后接6个全连接,fc1就是回归,fc181就是看成分类问题,-90到90共181个值作为分类来看。然后梯度回传的时候分配一个权重,原文代码里回归的权重是0.1,而分类的权重是2000,所以这个还是希望分类的loss来导向回归,因为最终我们要用的还是回归,而不是直接用分类的结果作为输出结果的。因为角度分布还是连续的而不是离散的。我们将其看成离散问题是因为我们采集的时候是离散采集的,而输出必须是连续的,这样才符合实际。

crop数据集

对数据集进行crop也是本文的一大贡献,文章探索了不同crop比例下对结果的影响,具体的影响可以看下图。

为什么要裁剪呢?因为背景对结果的影响很大,同样一张图片换用不同的背景,预测的结果是不一样的,为了解决这个问题,就需要找到一个最合适的裁剪比例,所以就引出了这个方法,通过测试不同的裁剪比例,找到一个合适的K,在测试集上的准确率最高。所以本文的工作其实也是很有启发的,就是通过改变裁剪的比例来增强数据集。我认为在这个启发下其实还可以通过更换背景来扩充数据集,所以我们最近在做的工作就是与这个相关的。

实验和结论

这张图表明在BIWI数据集下本文的方法SOTA了,但是对比的方法其实还是很少的,这是2019年5月的文章,理应多比较一些方法,所以其实说服力欠缺。

这个就是作者做了很多组K的实验确定的结果,结论就是0.5就是最好的K值。

[论文笔记] Improving Head Pose Estimation with a Combined Loss and Bounding Box Margin Adjustment的更多相关文章

  1. [论文笔记] Fine-Grained Head Pose Estimation Without Keypoints

    Fine-Grained Head Pose Estimation Without Keypoints 简介 head pose estimation 经典论文,使用CNN预测三个角度值,pitch, ...

  2. 论文阅读笔记四十七:Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression(CVPR2019)

    论文原址:https://arxiv.org/pdf/1902.09630.pdf github:https://github.com/generalized-iou 摘要 在目标检测的评测体系中,I ...

  3. 论文笔记 Robust face landmark estimation under occlusion

    1. Abstract 现实世界中的人脸很多时候都存在遮挡以及大的形状变化,而目前的人脸关键点检测方法在这种情况下表现欠佳, 因为它们未能提供一种系统的方法来处理异常.因而authors提出一种新的方 ...

  4. 论文笔记: Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation

    Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation 2018-11-03 09:58:58 Paper: http ...

  5. 论文笔记 Stacked Hourglass Networks for Human Pose Estimation

     Stacked Hourglass Networks for Human Pose Estimation key words:人体姿态估计 Human Pose Estimation 给定单张RGB ...

  6. Towards Accurate Multi-person Pose Estimation in the Wild 论文阅读

    论文概况 论文名:Towards Accurate Multi-person Pose Estimation in the Wild 作者(第一作者)及单位:George Papandreou, 谷歌 ...

  7. 论文解读:3D Hand Shape and Pose Estimation from a Singl RGB Image

    本文链接:https://blog.csdn.net/williamyi96/article/details/89207640由于最近做到了一些 3D Hand Pose Estimation 相关的 ...

  8. Spectral Norm Regularization for Improving the Generalizability of Deep Learning论文笔记

    Spectral Norm Regularization for Improving the Generalizability of Deep Learning论文笔记 2018年12月03日 00: ...

  9. 论文阅读理解 - Stacked Hourglass Networks for Human Pose Estimation

    http://blog.csdn.net/zziahgf/article/details/72732220 keywords 人体姿态估计 Human Pose Estimation 给定单张RGB图 ...

随机推荐

  1. 微信小程序与内嵌webview之间来回跳转的几点总结,以及二维码的使用

    截止到发稿小程序支持的功能,后续如果小程序更新在完善文稿. 1. 小程序可以内嵌组件跳转到h5页面,前提是在小程序后台配置相应的业务域名.新打开的h5页面会替代小程序组件内的其它组件,即为h5不能与小 ...

  2. Oracle及SQLPLUS使用笔记

    Oracle及SQLPLUS使用笔记 自己之前粗粗的学过MySQL,学校用的是Oracle,学生使用sqlplus,这是个命令行界面的数据库管理软件(为了学习嘛,不用图形化可以理解),这里记录一些使用 ...

  3. 运维DNS原理配置

    Linux DNS原理简介及配置 DNS简介 DNS原理 域名解析的过程 资源记录 DNS BIND安装配置 一.简介 一般来讲域名比IP地址更加的有含义.也更容易记住,所以通常用户更习惯输入域名来访 ...

  4. 人工智能AI从入门到精通所有视频教程(140G)以及数据资料免费拿

    包含了人工智能AI从入门到精通所有视频教程(140G). 资料获取方式,关注公总号RaoRao1994,查看往期精彩-所有文章,即可获取资源下载链接 更多资源获取,请关注公总号RaoRao1994

  5. 如何正确训练一个 SVM + HOG 行人检测器

    这几个月一直在忙着做大论文,一个基于 SVM 的新的目标检测算法.为了做性能对比,我必须训练一个经典的 Dalal05 提出的行人检测器,我原以为这个任务很简单,但是我错了. 为了训练出一个性能达标的 ...

  6. xss非法字段过滤

    import java.util.ArrayList; import java.util.List; import java.util.regex.Matcher; import java.util. ...

  7. Java Script语法

    JavaScript 语法 JavaScript 是一个程序语言.语法规则定义了语言结构. JavaScript 语法 JavaScript 是一个脚本语言. 它是一个轻量级,但功能强大的编程语言. ...

  8. python中reload(sys)作用

    python在安装时,默认的编码是ascii,当程序中出现非ascii编码时,python的处理常常会报错UnicodeDecodeError: 'ascii' codec can't decode ...

  9. visual studio密钥

    企业版:NJVYC-BMHX2-G77MM-4XJMR-6Q8QF 专业版:KBJFW-NXHK6-W4WJM-CRMQB-G3CDH

  10. app 进入后台进行模糊处理

    金融类app防止信息在后台中被一些恶意截屏软件进行截屏,对进入后台的app做模糊处理 - (void)applicationWillResignActive:(UIApplication *)appl ...