算法中Amortised time的理解
ref:http://stackoverflow.com/questions/200384/constant-amortized-time
如果非要翻译成中文,我觉得摊算时间或均摊时间(注意,它和平均时间不同)。
--------------
Amortised time explained in simple terms:
If you do an operation say a million times, you don't really care about the worst-case or the best-case of that operation - what you care about is how much time is taken in total when you repeat the operation a million times.
So it doesn't matter if the operation is very slow once in a while, as long as "once in a while" is rare enough for the slowness to be diluted away. Essentially amortised time means "average time taken per operation, if you do many operations". Amortised time doesn't have to be constant; you can have linear and logarithmic amortised time or whatever else.
Let's take mats' example of a dynamic array, to which you repeatedly add new items. Normally adding an item takes constant time (that is, O(1)). But each time the array is full, you allocate twice as much space, copy your data into the new region, and free the old space. Assuming allocates and frees run in constant time, this enlargement process takes O(n) time where n is the current size of the array.
So each time you enlarge, you take about twice as much time as the last enlarge. But you've also waited twice as long before doing it! The cost of each enlargement can thus be "spread out" among the insertions. This means that in the long term, the total time taken for adding m items to the array is O(m), and so the amortised time (i.e. time per insertion) is O(1).
---------------------------------
ref: http://stackoverflow.com/questions/19650636/amortized-analysis
Expected time:
We make some assumptions and, based on these assumptions, we make statements about the running time.
Hash tables is one such example. We assume that the data is well-distributed, and claim that the running time of operations are O(1), whereas the worst-case running time for an operation is actually O(n).
Amortized time:
Even though one operation may take longer than some given time, the time across multiple operations will balance out to give the mentioned running time.
(Well-implemented) self-resizing arrays is one such example. When you insert, it takes O(n) to resize the array, but, across many inserts, each will take O(1) on average.
算法中Amortised time的理解的更多相关文章
- KMP算法中next函数的理解
首先要感谢http://blog.csdn.net/v_july_v/article/details/7041827以及http://blog.chinaunix.net/uid-27164517-i ...
- KMP算法中next数组的理解与算法的实现(java语言)
KMP 算法我们有写好的函数帮我们计算 Next 数组的值和 Nextval 数组的值,但是如果是考试,那就只能自己来手算这两个数组了,这里分享一下我的计算方法吧. 计算前缀 Next[i] 的值: ...
- KMP算法中我对获取next数组的理解
之前在学KMP算法时一直理解不了获取next数组的函数是如何实现的,现在大概知道怎么一回事了,记录一下我对获取next数组的理解. KMP算法实现的原理就不再赘述了,先上KMP代码: 1 void g ...
- 理解KNN算法中的k值-knn算法中的k到底指的是什么 ?
2019-11-09 20:11:26为方便自己收藏学习,转载博文from:https://blog.csdn.net/llhwx/article/details/102652798 knn算法是指对 ...
- 问题 1690: 算法4-7:KMP算法中的模式串移动数组
题目链接:https://www.dotcpp.com/oj/problem1690.html 题目描述 字符串的子串定位称为模式匹配,模式匹配可以有多种方法.简单的算法可以使用两重嵌套循环,时间复杂 ...
- 机器学习算法中的准确率(Precision)、召回率(Recall)、F值(F-Measure)
摘要: 数据挖掘.机器学习和推荐系统中的评测指标—准确率(Precision).召回率(Recall).F值(F-Measure)简介. 引言: 在机器学习.数据挖掘.推荐系统完成建模之后,需要对模型 ...
- java中线程同步的理解(非常通俗易懂)
转载至:https://blog.csdn.net/u012179540/article/details/40685207 Java中线程同步的理解 我们可以在计算机上运行各种计算机软件程序.每一个运 ...
- 动态规划(Dynamic Programming)算法与LC实例的理解
动态规划(Dynamic Programming)算法与LC实例的理解 希望通过写下来自己学习历程的方式帮助自己加深对知识的理解,也帮助其他人更好地学习,少走弯路.也欢迎大家来给我的Github的Le ...
- 关于diffing算法中key的使用
在vue和react中(只学了这两个),经常需要渲染元素到DOM上,而且如果不写key,有的浏览器会进行报错或者进行提示. 在我的理解里:key其实就是一个身份的标识,证明这个位置坐的就是这个人.后期 ...
随机推荐
- 断言(assert)
断言是编程术语,表示为一些布尔表达式,程序员相信在程序中的某个特定点该表达式值为真,可以在任何时候启用和禁用断言验证,因此可以在测试时启用断言而在部署时禁用断言. 简单点说,断言指的就是,将结果判断说 ...
- JS判断页面是否为浏览器当前页
function currentPage() { var hiddenProperty = 'hidden' in document ? 'hidden' : 'webkitHidden' in do ...
- 用户吐槽不断:Android 10.0没法用
如果你升级到Android Q第三个测试版的话,那么最近是不是被设备不断重启搞崩溃了,事实上也确实如此,因为有很多用户都遇到了类似的情况,大家吐槽谷歌的声音越来越大. 不少用户发现,自己设备升级至An ...
- nova计算服务分布式
控制节点 #第一步 控制节点下载nova-conpute包 #安装依赖包 #vim /etc/nova/nova.conf [DEFAULT] my_ip=#当前节点IP use_neutron = ...
- ThinkCMF5.1虚拟机下安装的问题,已成功
官方的解决方案:https://www.kancloud.cn/thinkcmf/faq/1197179 按它的提示,发现阿里云的虚拟主机htdoc同级的目录没有上传权限. 只能把“ThinkCMF文 ...
- mysql orderby 问题
开发写的sql select * from aaa where course_id=xx order by a,b 当a,b条件都一致时,默认应该以id排序,当数据条数大于1x条(17)时,结果变为 ...
- 关于PHP://input
$data = file_get_contents("php://input"); php://input 是个可以访问请求的原始数据的只读流. POST 请求的情况下,最好 ...
- Parallel并行循环
Parallel.For(, , new ParallelOptions() { MaxDegreeOfParallelism = 100 },(i, pls) => { ) { pls.Bre ...
- 第04课:GDB常用命令详解(上)
本课的核心内容如下: run命令 continue命令 break命令 backtrace与frame命令 info break.enable.disable和delete命令 list命令 prin ...
- jpa 中的save()方法
@RequestMapping(value = "", method = RequestMethod.POST) public String postAccount(@Reques ...