题目:https://loj.ac/problem/3092

同一个人的不同城堡之间没有什么联系,只是和<=m。所以对每个城堡的 s 个值排序,做一个 f[ i ][ j ] 表示第 i 个城堡花 j 的代价最大能得到多少收益。

dp[ i ][ j ] 表示前 i 个城堡花 j 的代价的最大收益。 dp[ i ][ j ] = max( dp[ i-1 ][ k ] + f[ i ][ j-k ] ) 。

发现 f[ i ][ * ] 是一个分 s 段的函数。所以枚举 s 段即可。也就是把 f 改成 f[ i ][ s ] 表示第 i 个城堡得到 s 的收益最少花多少代价。

dp[ i ][ j ] = max( s + dp[ i-1 ][ j-f[ i ][ s ] ] ) 。注意代价要乘 i 。

时间是 2e8 却能过。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
int Mx(int a,int b){return a>b?a:b;}
const int N=,M=2e4+;
int cnt,n,m,a[N][N],f[N][N],dp[N][M];
int main()
{
cnt=rdn();n=rdn();m=rdn();
for(int i=;i<=cnt;i++)
for(int j=;j<=n;j++)a[j][i]=rdn();
for(int i=;i<=n;i++)
{
sort(a[i]+,a[i]+cnt+);
for(int j=;j<=cnt;j++)
f[i][j]=*a[i][j]+;
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int s=;s<=cnt;s++)
{
if(j<f[i][s])break;
dp[i][j]=Mx(dp[i][j],s*i+dp[i-][j-f[i][s]]);
}
printf("%d\n",dp[n][m]);
return ;
}

LOJ 3092 「BJOI2019」排兵布阵 ——DP的更多相关文章

  1. LOJ#3092. 「BJOI2019」排兵布阵(递推)

    题面 传送门 题解 设\(dp_{i,j}\)表示前\(i\)座塔派了总共\(j\)个人的最大收益,转移显然 //minamoto #include<bits/stdc++.h> #def ...

  2. 【LOJ】#3092. 「BJOI2019」排兵布阵

    LOJ#3092. 「BJOI2019」排兵布阵 这题就是个背包啊,感觉是\(nms\)的但是不到0.2s,发生了什么.. 就是设\(f[i]\)为选了\(i\)个人最大的代价,然后有用的人数只有\( ...

  3. 【BJOI2019】排兵布阵 DP

    题目大意:有$n$座城堡,$s$轮游戏. 对于第$x$轮,第i座城堡的士兵数量为$a[x][i]$. 如果你需要攻下第i座城堡,你在第i座城堡部署的士兵必须严格大于$2a[x][i]$,如果攻下了你会 ...

  4. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  5. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  6. [BJOI2019]排兵布阵 DP

    [BJOI2019]排兵布阵 DP 比较好想的DP,设\(dp[i][j]\)表示第\(i\)个城堡时,已派出\(j\)个士兵.决策时,贪心派出恰好严格大于某一玩家派出的数量的两倍(不然浪费).我们发 ...

  7. loj 3090 「BJOI2019」勘破神机 - 数学

    题目传送门 传送门 题目大意 设$F_{n}$表示用$1\times 2$的骨牌填$2\times n$的网格的方案数,设$G_{n}$$表示用$1\times 2$的骨牌填$3\times n$的网 ...

  8. LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划

    题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...

  9. LOJ 3094 「BJOI2019」删数——角标偏移的线段树

    题目:https://loj.ac/problem/3094 弱化版是 AGC017C . 用线段树维护那个题里的序列即可. 对应关系大概是: 真实值的范围是 [ 1-m , n+m ] :考虑设偏移 ...

随机推荐

  1. poj3614Sunscreen

    Description To avoid unsightly burns while tanning, each of the C (1 ≤ C ≤ 2500) cows must cover her ...

  2. 学习:STL----优先队列

    优先队列是队列的高级版,最大的特点是可以内部实现排序 优先队列的定义 优先队列内部使用堆排序,从而实现队列内一直保持着某种顺序规律(比如递增,递减等) 在使用优先队列时,首先要引入头文件:#inclu ...

  3. Pytest+Allure2+Jenkins搭建

    前置: (1)安装Python3(这里版本为3.7) (2)搭建Jenkins环境 一.安装pytest 直接使用pip安装(这里由于笔者的环境同时安装了Python2和Python3,所以在pyth ...

  4. Eclipse Kepler安装WST Server Adapter后创建Server无Tomcat解决方法

    在Eclipse Kepler下安装完WST Server Adapter后,创建Server时发现没有Tomcat服务器的选项,这个问题解决起来很简单, 只需要安装一下JST Server Adap ...

  5. vue2.0中router-link详解

    vue2.0中router-link详解:https://blog.csdn.net/lhjuejiang/article/details/81082090 在vue2.0中,原来的v-link指令已 ...

  6. kmp(前中后最长相同长度)

    http://acm.hdu.edu.cn/showproblem.php?pid=4763 Theme Section Time Limit: 2000/1000 MS (Java/Others)  ...

  7. dp(最长升序列:二分查找时间优化nlogn)

    We are all familiar with sorting algorithms: quick sort, merge sort, heap sort, insertion sort, sele ...

  8. Manacher(最长回文串)

    http://acm.hdu.edu.cn/showproblem.php?pid=3068 最长回文 Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符 ...

  9. 8786:方格取数 (多线程dp)

    [题目描述] 设有N*N的方格图(N<=10),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点.在走 ...

  10. 关于自带的sql developer修改java.exe版本的解决办法

    第一次安装oracle11gR2后,就很好奇的点了一下,当点击应用程序开发下的sql developer后,就弹出一个窗口,要选择一个java.exe的路径,我就讲本机中的JDK1.7下的java.e ...