X or What?

符号约定:

  • $\xor$ 表示异或。
  • popcount($x$) 表示非负整数 $x$ 的二进制表示里数字 1 出现的次数。例如,$13 = 1101_2$,则 popcount(13) = 4。

注意到,popcount($a \xor b$) = popcount($a$) + popcount($b$) - 2 * number of positions both $a$ and $b$ are set。

因此,popcount($a \xor b$) 的奇偶性 = (popcount($a$) + popcount($b$)) 的奇偶性。

区间 $[L, R]$ 的异或和的 popcount 为偶数 $\iff$ $L - 1, R$ 这两个前缀的异或和的 popcount 同奇偶。

分别考虑异或和的 popcount 为奇数的前缀、异或和的 popcount 为偶数的前缀。

改变 $A_p$ 对答案的影响:

若 $A_p$ 的 popcount 的奇偶性不变,则答案亦不变,否则 $p, p+1, \dots, n - 1$ 这些前缀的异或和的 popcount 的奇偶性翻转。

解法 1

用线段树维护前缀的异或和的 popcount 的奇偶性。

支持查询:

  • 异或和的 popcount 为偶数的前缀最后一次出现的位置。
  • 异或和的 popcount 为奇数的前缀第一次/最后一次出现的位置。
bool bit_even(int x) {
return (__builtin_popcount(x) & 1) == 0;
} struct node {
int n[2];
int flipped;
void flip() {
swap(n[0], n[1]);
flipped ^= 1;
}
};
const int N = 100005;
node seg[4 * N]; int sum[N];
void push_up(int i) {
int l = i * 2, r = l + 1;
for (int j = 0; j < 2; j++) {
seg[i].n[j] = seg[l].n[j] + seg[r].n[j];
}
} void build (int i, int l, int r) {
seg[i].flipped = 0;
if (l == r) {
seg[i].n[0] = bit_even(sum[l]);
seg[i].n[1] = 1 - seg[i].n[0];
return;
}
int mid = (l + r) / 2;
build(i * 2, l, mid);
build(i * 2 + 1, mid + 1, r);
push_up(i);
} void push_down(int i) {
if (seg[i].flipped) {
int l = i * 2, r = i * 2 + 1;
seg[l].flip();
seg[r].flip();
seg[i].flipped = 0;
}
} int find_first(int v, int i, int l, int r) {
if (seg[i].n[v] == 0) return r + 1;
if (l == r) return l;
push_down(i);
int mid = (l + r) / 2;
int res = find_first(v, i * 2, l, mid);
if (res <= mid) {
return res;
}
return find_first(v, i * 2 + 1, mid + 1, r);
} int find_last(int v, int i, int l, int r) {
if (seg[i].n[v] == 0) return l - 1;
if (l == r) return l;
push_down(i);
int mid = (l + r) / 2;
int res = find_last(v, i * 2 + 1, mid + 1, r);
if (res > mid) {
return res;
}
return find_last(v, i * 2, l, mid);
} void flip(int i, int l, int r, int ql, int qr) {
if (ql > r || qr < l) return;
if (ql <= l && r <= qr) {
seg[i].flip();
return;
}
int mid = (l + r) / 2;
push_down(i);
flip(i * 2, l, mid, ql, qr);
flip(i * 2 + 1, mid + 1, r, ql, qr);
push_up(i);
} int main() {
#ifdef LOCAL
ifstream in("main.in");
cin.rdbuf(in.rdbuf());
#endif
int T; cin >> T;
for (int cas = 1; cas <= T; ++cas) {
cout << "Case #" << cas << ":";
int n, q; cin >> n >> q;
vector<int> a(n + 1);
for (int i = 1; i <= n; i++) {
cin >> a[i];
sum[i] = sum[i - 1] ^ a[i];
}
build(1, 1, n);
while (q--) {
int p, v;
cin >> p >> v;
++p;
if (bit_even(v) != bit_even(a[p])) {
flip(1, 1, n, p, n);
}
a[p] = v;
cout << " " << max(find_last(0, 1, 1, n), find_last(1, 1, 1, n) - find_first(1, 1, 1, n));
}
cout << endl;
}
return 0;
}

Kick Start 2019 Round D的更多相关文章

  1. kick start 2019 round D T3题解

    ---恢复内容开始--- 题目大意:共有N个房子,每个房子都有各自的坐标X[i],占据每个房子需要一定花费C[i].现在需要选择K个房子作为仓库,1个房子作为商店(与题目不同,概念一样),由于仓库到房 ...

  2. kick start 2019 round D T2题解

    题目大意:由N个房子围成一个环,G个人分别顺时针/逆时针在房子上走,一共走M分钟,每分钟结束,每个人顺/逆时针走到相邻的房子.对于每个房子都会记录最后时刻到达的人(可能是一群人).最终输出每个人会被几 ...

  3. Kick Start 2019 Round A Contention

    $\DeclareMathOperator*{\argmax}{arg\,max}$ 题目链接 题目大意 一排 $N$ 个座位,从左到右编号 $1$ 到 $N$ . 有 $Q$ 个预定座位的请求,第 ...

  4. Kick Start 2019 Round H. Elevanagram

    设共有 $N = \sum_{i=1}^{9} A_i$ 个数字.先把 $N$ 个数字任意分成两组 $A$ 和 $B$,$A$ 中有 $N_A = \floor{N/2}$ 个数字,$B$ 中有 $N ...

  5. Kick Start 2019 Round A Parcels

    题目大意 $R \times C$ 的网格,格子间的距离取曼哈顿距离.有些格子是邮局.现在可以把至多一个不是邮局的格子变成邮局,问每个格子到最近的邮局的曼哈顿距离的最大值最小是多少. 数据范围 $ 1 ...

  6. Kick Start 2019 Round B Energy Stones

    对我很有启发的一道题. 这道题的解法中最有思维难度的 observation 是 For simplicity, we will assume that we never eat a stone wi ...

  7. 【DP 好题】Kick Start 2019 Round C Catch Some

    题目链接 题目大意 在一条数轴上住着 $N$ 条狗和一个动物研究者 Bundle.Bundle 的坐标是 0,狗的坐标都是正整数,可能有多条狗住在同一个位置.每条狗都有一个颜色.Bundle 需要观测 ...

  8. Kick Start 2019 Round F Teach Me

    题目链接 题目大意 有 $N$ 个人,$S$ 项技能,这些技能用 $1, 2, 3, \dots, S$ 表示 .第 $i$ 个人会 $c_i$ 项技能($ 1 \le c_i \le 5 $).对于 ...

  9. Google Kick Start 2019 C轮 第一题 Wiggle Walk 题解

    Google Kick Start 2019 C轮 第一题 Wiggle Walk 题解 题目地址:https://codingcompetitions.withgoogle.com/kickstar ...

随机推荐

  1. Ubuntu18.04安装rabbitvcs svn图形化客户端和简单实用

    1.1  自带source源里面查找rabbitvcs信息 sudo apt search rabbitvcs 1.2  安装rabbitvcs sudo apt install rabbitvcs- ...

  2. sessionStorge和localStorage的使用-踩坑记_09

    sessionStorge的使用 sessionStorage 属性允许你访问一个 session Storage 对象.它与 localStorage 相似,不同之处在于 localStorage ...

  3. XML文件报错dubbo:XX解决方法

    特别提示:本人博客部分有参考网络其他博客,但均是本人亲手编写过并验证通过.如发现博客有错误,请及时提出以免误导其他人,谢谢!欢迎转载,但记得标明文章出处:http://www.cnblogs.com/ ...

  4. eclipse安装错误的解决办法

    eclipse安装错误的解决办法 Eclipse 是一个集成开发环境,如Java,C,C++,PHP等安装Eclipse首先得先安装java的Jdk或者Jre 首先访问https://www.ecli ...

  5. 云服务器搭建anaconda pytorch torchvision

    (因为在普通用户上安装有些权限问题安装出错,所以我在root用户下相对容易安装,但是anaconda官网说可以直接在普通用户下安装,不过,在root下安装,其他用户也是能用的. 访问Anaconda官 ...

  6. LeetCode 61. 旋转链表(Rotate List)

    题目描述 给定一个链表,旋转链表,将链表每个节点向右移动 k 个位置,其中 k 是非负数. 示例 1: 输入: 1->2->3->4->5->NULL, k = 2 输出 ...

  7. LeetCode 54. 螺旋矩阵(Spiral Matrix) 剑指offer-顺时针打印矩阵

    题目描述 给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素. 示例 1: 输入: [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, ...

  8. 将文件夹上传到FTP服务器,遍历上传,,,文件夹不能直接上传到FTP服务器上。。。

    <? $ftp_ip = "FTP"; $ftp_user = "user"; $ftp_pwd = "password"; $con ...

  9. java基本类型对齐

    1.Java 基本数据类型和精度 整数数据类型 关键字 描述 大小 格式 byte 字节长度整数 8 位二进制补码 从 +127 到 -128 short 短整型 16 位二进制补码 从 +32767 ...

  10. koa2中间键原理

    一.koa2 const http = require('http'); const compose = require('./compose'); class Koa { constructor() ...