【Islands and Bridges】题解
题目
题目描述
给定一些岛屿和一些连接岛屿的桥梁,大家都知道汉密尔顿路是访问每个岛屿一次的路线,在我们这个地图中,每个岛屿有个正整数的权值,表示这个岛屿的观赏价值。假设一共有N个岛屿,用Vi表示岛屿Ci的价值,汉密尔顿路C1C2....Cn的价值是以下三部分的总和:
(1)所有岛屿的价值之和;
(2)对于路径中相邻的两个岛屿CiCi+1,把两个岛屿的价值之积加到总价值中;
(3)路径中连续三个岛屿CiCi+1Ci+2,如果Ci与Ci+2有桥直接相连,则把这三个岛屿价值之积加到总价值中。
要求计算汉密尔顿路最大的价值以及方案数。
输入
输入第一行是一个整数Q(Q<=20),表示测试数据的数量。每个测试数据第一行输入两个整数N和M,分别表示岛屿数和桥梁数,接下来一行包含N个正整数,第i个数表示Vi,每个数不超过100,最后M行,每行两个数X,Y,表示岛X和岛Y之间有一座桥直接相连,桥是双向的,岛屿编号为1到N(N<=13)
输出
对于每个测试数据,输出一行,两个整数,第一个数表示最大价值,第二个数表示方案数,如果不存在汉密尔顿路径,输出“0 0”
注意:一条路径可以反着走,我们认为这两条路径是同一条路径。
样例输入
2
3 3
2 2 2
1 2
2 3
3 1
4 6
1 2 3 4
1 2
1 3
1 4
2 3
2 4
3 4
样例输出
22 3
69 1
分析
对于第一问,因为N<=13,所以我们可以用状态压缩dp,压缩每个点是否走过的状态;当路径中连续三个岛屿CiCi+1Ci+2,Ci与Ci+2有桥直接相连时,就需要知道Ci和Ci+1这两个点。所以dp方程为f[i][j][k],指在状态i的时候,走到了k点,上一个走到的点是j的最大值。dp方程转移为:
f[i+bb[l]][k][l]=max(f[i+bb[l]][k][l],f[i][j][k]+v[k]v[l]+v[l]) **//bb数组存2^i
**f[i+bb[l]][k][l]=max(f[i+bb[l]][k][l],f[i][j][k]+v[k]v[l]+v[j]v[k]v[l]+v[l])//j和l有路径相通
对于第二问,因为要求最大的价值的方案数,所以用g[i][j][k]指在状态i的时候,走到了k点,上一个走到的点是j的最大值的方案数。如果可以转移时但不相等就覆盖答案,只有在可以转移时并且相等才能累加答案。最后统计当价值为最大时的方案数。
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
long long g[10001][20][20],f[10001][20][20];
long long n,m,e,v[30];
long long bb[30];
bool b[30][30];
int main()
{
cin>>e;
long long x,y;
bb[1]=1;
int i,j,k,l;
for(i=2;i<=29;i++)
bb[i]=bb[i-1]*2;
while(e--)
{
scanf("%lld%lld",&n,&m);
for(i=0;i<=10000;i++)
for(j=0;j<=19;j++)
for(k=0;k<=19;k++)
{
f[i][j][k]=0;
g[i][j][k]=0;
}
for(i=0;i<=n;i++)
for(j=0;j<=n;j++)
{
b[i][j]=false;
}
for(i=1;i<=n;i++)
{
scanf("%lld",&v[i]);
}
for(i=1;i<=m;i++)
{
scanf("%lld%lld",&x,&y);
b[x][y]=b[y][x]=true;
f[bb[x]+bb[y]][x][y]=f[bb[x]+bb[y]][y][x]=v[x]*v[y]+v[x]+v[y];//初始化f数组
g[bb[x]+bb[y]][x][y]=g[bb[x]+bb[y]][y][x]=1;//初始化g数组
}
for(i=0;i<=bb[n+1]-1;i++)
{
for(j=1;j<=n;j++)
if((bb[j] | i)==i)
for(k=1;k<=n;k++)
if((bb[k] | i)==i && b[j][k]){if(!g[i][j][k]) continue;
for(l=1;l<=n;l++)
if((bb[l] | i)!=i && b[k][l] && b[j][l])//当j和l有路径相同
{
if(f[i+bb[l]][k][l]==f[i][j][k]+v[k]*v[l]+v[j]*v[k]*v[l]+v[l])
g[i+bb[l]][k][l]+=g[i][j][k];
else
//当j和l无路径相同
if(f[i+bb[l]][k][l]<f[i][j][k]+v[k]*v[l]+v[j]*v[k]*v[l]+v[l])
{
f[i+bb[l]][k][l]=f[i][j][k]+v[k]*v[l]+v[j]*v[k]*v[l]+v[l];
g[i+bb[l]][k][l]=g[i][j][k];
}
}
else
if((bb[l] | i)!=i && b[k][l])
{
if(f[i+bb[l]][k][l]==f[i][j][k]+v[k]*v[l]+v[l])
g[i+bb[l]][k][l]+=g[i][j][k];
else
if(f[i+bb[l]][k][l]<f[i][j][k]+v[k]*v[l]+v[l])
{
f[i+bb[l]][k][l]=f[i][j][k]+v[k]*v[l]+v[l];
g[i+bb[l]][k][l]=g[i][j][k];
}
}}
}
long long ans=0;
long long ma=0;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
if(f[bb[n+1]-1][i][j]>ma)
{
ma=f[bb[n+1]-1][i][j];
ans=g[bb[n+1]-1][i][j];
}
else
if(f[bb[n+1]-1][i][j]==ma)
{
ans+=g[bb[n+1]-1][i][j];
}
}
if(n==1) cout<<v[1]<<' '<<1<<endl;else
if(ma==0 || ans==0) cout<<0<<' '<<0<<endl;else
printf("%lld %lld\n",ma,ans/2);
}
}
【Islands and Bridges】题解的更多相关文章
- POJ2288 Islands and Bridges
Description Given a map of islands and bridges that connect these islands, a Hamilton path, as we al ...
- 【状压dp】Islands and Bridges
Islands and Bridges Time Limit: 4000MS Memory Limit: 65536K Total Submissions: 11034 Accepted: 2 ...
- [poj2288] Islands and Bridges (状压dp)
Description Given a map of islands and bridges that connect these islands, a Hamilton path, as we al ...
- HDU 1668 Islands and Bridges
Islands and Bridges Time Limit: 4000ms Memory Limit: 65536KB This problem will be judged on HDU. Ori ...
- POJ 2288 Islands and Bridges(状压DP)题解
题意:n个点,m有向边,w[i]表示i的价值,求价值最大的哈密顿图(只经过所有点一次).价值为:所有点的w之和,加上,每条边的价值 = w[i] * w[j],加上,如果连续的三个点相互连接的价值 = ...
- 【以前的空间】poj 2288 Islands and Bridges
一个不错的题解 : http://blog.csdn.net/accry/article/details/6607703 这是一道状态压缩.每个点有一个值,我们最后要求一个最值sum.sum由三部分组 ...
- poj 2288 Islands and Bridges (状压dp+Tsp问题)
这道题千辛万苦啊! 这道题要涉及到当前点和前面两个点,那就设dp[state][i][j]为当前状态为state,当前点为i,前一个点为j 这个状态表示和之前做炮兵那题很像,就是涉及到三个点时,就多设 ...
- DP:Islands and Bridges(POJ 2288)
2015-09-21 造桥基建工程 题目大意,就是有n座岛和k座桥,要你找一条哈密顿圈(找完所有的岛,并且每个岛只经过一次),当经过一座岛就加上岛的价值,如果两岛联通,则加上两座岛的价值之积,如果三座 ...
- POJ2288 Islands and Bridges(TSP:状压DP)
求一个图的哈密顿路径的最大权及其路径数.显然状态压缩+DP. dp[v][u][S] 表示从v走到当前顶点 u且走过的顶点集合是S的 最大权值和方案数 这题我用记忆化搜索,从终点开始递归进行,感觉这样 ...
随机推荐
- linux进阶命令
1.输出重定向:一般命令的输出都会显示在终端中,有些时候需要将一些命令的执行结果想要保存到文件中进行后续的分析/统计,则这时候需要使用到的输出重定向技术. >:覆盖输出,会覆盖掉原先的文件内容 ...
- IK分词器的安装与使用IK分词器创建索引
之前我们创建索引,查询数据,都是使用的默认的分词器,分词效果不太理想,会把text的字段分成一个一个汉字,然后搜索的时候也会把搜索的句子进行分词,所以这里就需要更加智能的分词器IK分词器了. 1. i ...
- vsftp新建用户及目录时遇到的坑
1.有关vsftp配置及用户权限设置,请参考: http://blog.sina.com.cn/s/blog_3edc5e2e0102vzv8.html 2.需求:公司另一部门要求单独建一目录,来存在 ...
- CTF—攻防练习之HTTP—PUT上传漏洞
主机:192.168.32.152 靶机:192.168.32.159 中间件PUT漏洞 包括apache,tomcat,IIS等中间件设置支持的HTTP方法(get,post,head,delete ...
- js在页面中添加一个元素 —— 添加弹幕
参考地址 [往下拉 —— 使用HTML DOM appendChild() 方法实现元素的添加 ] 一.创建 HTML <div class="right_liuyan"&g ...
- javascript number与isNan
number 与 isnan Number:表示整数和浮点数 NaN:即非数值(not a Number)是 一个特殊的数值.是Number类型的一种. 说明:1.任何涉及NaN的操作(例如Nan/1 ...
- ElasticSearch Kibana 创建索引,删除索引,查看索引配置
1.输入命令,点击绿色的三角形箭头. PUT chuyuan //创建索引 GET chuyuan/_settings //查看chuyuan索引下的配置 GET _all/_settings ...
- python中函数的参数和返回值
目录 函数 目标 01. 函数参数和返回值的作用 1.1 无参数,无返回值 1.2 无参数,有返回值 1.3 有参数,无返回值 1.4 有参数,有返回值 02. 函数的返回值 进阶 示例 -- 温度和 ...
- 在子类中,若要调用父类中被覆盖的方法,可以使用super关键字
在子类中,若要调用父类中被覆盖的方法,可以使用super关键字. package text; class Parent { int x; public Parent() { ...
- Luogu P2839 [国家集训队]middle
题目 首先我们考虑解决中位数一类问题的常用手段:二分\(mid\),将大于等于它的设为\(1\),小于它的设为\(−1\),判断区间和是否\(\ge0\). 对于询问\(a,b,c,d\),二分完\( ...