Task 1 辩论

有N 个参加辩论的候选人,每个人对这两个议题都有明确的态度,支持或反对。
作为组织者,小D 认真研究了每个候选人,并给每个人评估了一个非负的活跃度,
他想让活跃度之和尽可能大。
选出的候选人必须满足以下两个条件:
1. 至少有一半的人支持议题1。
2. 至少有一半的人支持议题2。
小D 想知道,在满足以上两个条件的情况下,活跃度之和最大是多少。

对于$ 100\%$ 的数据,$ N \leq  4 \times  10^5,0 ≤ Ai ≤ 5 \times  10^3 $

Sol : 首先$11$的全部都可以选,然后将$01$ 和 $10$排序,依次选取,把一组最大的$10$和$10$当做$11$处理,

剩余的情况就是$10$或$01$ $00$,这样子显然会让一个数逐渐的趋向于小于Sum/2,所以这个时候直接就挑权值大的数找即可。

  复杂度是$O(n \ log_2 \ n)$

# include<bits/stdc++.h>
# define int long long
using namespace std;
vector<int>a1,a2,a3,a4,tmp;
int n;
signed main()
{
scanf("%lld",&n);
for (int i=;i<=n;i++) {
int op,v; scanf("%lld%lld",&op,&v);
if (op==) a1.push_back(v);
else if (op==) a2.push_back(v);
else if (op==) a3.push_back(v);
else if (op==) a4.push_back(v);
}
sort(a1.begin(),a1.end()); reverse(a1.begin(),a1.end());
sort(a2.begin(),a2.end()); reverse(a2.begin(),a2.end());
sort(a3.begin(),a3.end()); reverse(a3.begin(),a3.end());
int num=,ans=,all=;
for (int i=;i<a1.size();i++) num++,ans+=a1[i],all++;
int pos;
for (pos=;pos<min(a2.size(),a3.size());pos++) {
ans+=a2[pos]+a3[pos]; num++; all+=;
}
for (int i=pos;i<a2.size();i++) tmp.push_back(a2[i]);
for (int i=pos;i<a3.size();i++) tmp.push_back(a3[i]);
for (int i=;i<a4.size();i++) tmp.push_back(a4[i]);
sort(tmp.begin(),tmp.end()); reverse(tmp.begin(),tmp.end());
for (int i=;i<tmp.size();i++) {
if (*num>=all+) ans+=tmp[i],all++;
else break;
}
printf("%lld\n",ans);
return ;
}

A.cpp

  Task 2 数独

  考虑一个六边形数独,3个方向的每一行都需要填不同的数,并且一个子六边形内部都需要填不同的数。

  填写数的值域是$[1,K]$

  

现在,有一些格子已经填好了数,询问字典序第$n$小的方案,

对于$ 100\%$ 的数据,$k ≤ 31,N ≤ 100000$

Sol : 直接dfs,然后对有关系的点直接存点的编号,由于数的大小为$31$所以可以用二进制数表示填是否填数,

  这样就不用开数组模拟了,位运算非常快,然后就基本上没有优化的空间了,本题是一个NP问题。

# pragma GCC optimize()
# include<bits/stdc++.h>
using namespace std;
int zu[][]={
{,},{,,,,},{,,,,,},{,,,,},{,,,,,},{,,,,},{,},
{,},{,,,,},{,,,,,},{,,,,},{,,,,,},{,,,,},{,},
{,},{,,,,},{,,,,,},{,,,,},{,,,,,},{,,,,},{,},
{,,,,,,},{,,,,,,},{,,,,,,},{,,,,,,},
{,,,,,,},{,,,,,,},{,,,,,,}
};
int a[],n,k;
vector<int>v[];
int get(int pos)
{
int lim=;
for (int i=;i<v[pos].size();i++) {
int to=a[v[pos][i]];
lim|=(<<to);
}
return lim;
}
void dfs(int pos)
{
if (pos==) {
n--;
if (!n){
puts("Found");
for (int i=;i<=;i++) printf("%d ",a[i]);
puts("");
exit();
}
return;
}
if (a[pos]) { dfs(pos+); return;}
int tmp=get(pos);
for (int i=;i<=k;i++)
if (!((<<i)&tmp)) a[pos]=i,dfs(pos+),a[pos]=;
}
int main()
{
for (int i=;i<;i++) {
for (int j=;j<;j++)
if (zu[i][j]> && zu[i][k]>) {
for (int k=;k<;k++) if (zu[i][j]!=zu[i][k])
v[zu[i][j]].push_back(zu[i][k]);
v[zu[i][k]].push_back(zu[i][j]);
}
}
for (int i=;i<=;i++) {
sort(v[i].begin(),v[i].end());
v[i].erase(unique(v[i].begin(),v[i].end()),v[i].end());
}
scanf("%d%d",&k,&n);
for (int i=;i<=;i++) scanf("%d",&a[i]);
dfs();
puts("No way");
return ;
}

B.cpp

HGOI20190812 省常中互测5的更多相关文章

  1. HGOI 20190816 省常中互测8

    Problem A  有两条以(0,0)为端点,分别经过(a,b),(c,d)的射线,你要求出夹在两条射线中间,且距离(0,0)最近的点(x,y) 对于$100\%$的数据满足$1 \leq T \l ...

  2. HGOI20190814 省常中互测7

    Problem A 中间值 对于$2$个非严格单增序列$\{A_n\} , \{B_n\}$,维护下列两个操作: 1 x y z: (x=0)时将$A_y = z$ , (x=1)时将$B_y = z ...

  3. HGOI20190813 省常中互测6

    Problem A 蛋糕 将$n \times m $大小的蛋糕切成每块为$1 \times 1$大小的$n\times m$块. 交换任意两块蛋糕的切割顺序的方案算作一种. 对于$100 \%$的数 ...

  4. HGOI20190811 省常中互测4

    Problem A magic 给出一个字符串$S$,和数字$n$,要求构造长度为$n$只含有小写字母的字符串$T$, 使得在$T$中存在删除且仅删除一个子串使得$S=T$成立. 输出$T$的构造方案 ...

  5. HGOI20190810 省常中互测3

    Problem A  夏洛特 若当前处在点$(x,y)$下一时刻可以向该点四周任意方向走动一步, 初始在$(0,0)$是否存在一条合法的路线满足下列$n$个限制: 每一个限制形如$t_i , x_i ...

  6. HGOI20190809 省常中互测2

    Problem A 时之终结 构造一个含有$n$个节点的无重边无自环的有向图, 使得从$1$出发,每一次经过一条$(u,v) (u < v)$的边到达节点$n$的方案恰好有$y$种. 对于$10 ...

  7. HGOI20190808 省常中互测1

    Problem A  sum 给出$n$个元素的序列$\{a_i\}$,求出两个不相交连续子序列的最大元素和. 即对于$1 \leq A \leq B \leq C \leq D \leq n$最大化 ...

  8. 【2018集训队互测】【XSY3372】取石子

    题目来源:2018集训队互测 Round17 T2 题意: 题解: 显然我是不可能想出来的……但是觉得这题题解太神了就来搬(chao)一下……Orzpyz! 显然不会无解…… 为了方便计算石子个数,在 ...

  9. 【CH 弱省互测 Round #1 】OVOO(可持久化可并堆)

    Description 给定一颗 \(n\) 个点的树,带边权. 你可以选出一个包含 \(1\) 顶点的连通块,连通块的权值为连接块内这些点的边权和. 求一种选法,使得这个选法的权值是所有选法中第 \ ...

随机推荐

  1. TCP/IP 物理层卷二 -- 交换技术

    一.概念 交换技术是指各台主机之间.各通信设备之间或者主机和通信设备之间(简单理解:你的PC和我的PC之间.你的PC和我的路由器.路由器之间)为交换信息所采用的的数据格式和交换装置的方式. 二.交换技 ...

  2. JS基础_js编写位置

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  3. 移动端H5开发自适应技巧

    移动端H5开发,必要要做到自适应各种分辨率的手机,下面由我为大家大致说一下,需要3步走 第一:head标签中添加: <meta name="viewport" content ...

  4. 最简单的方式实现rem布局

    加上如下js,px转换成rem需要手动,计算方式:量的大小除以100,就等于rem,例如:量的设计稿元素宽度是120,那么就写成{width: 1.2rem},这样写有什么问题,待研究,也欢迎补充 & ...

  5. 并发编程系列:Java线程池的使用方式,核心运行原理、以及注意事项

    并发编程系列: 高并发编程系列:4种常用Java线程锁的特点,性能比较.使用场景 线程池的缘由 java中为了提高并发度,可以使用多线程共同执行,但是如果有大量线程短时间之内被创建和销毁,会占用大量的 ...

  6. hive各种报错

    搭建了 CDH6.1.0环境 新加入一台机器都hive但是报错 javax.jdo.JDODataStoreException: Required table missing : "`VER ...

  7. 快速入门 Pandas

    先po几个比较好的Pandas入门网站十分钟入门:http://www.codingpy.com/article/a-quick-intro-to-pandas/手册前2章:http://pda.re ...

  8. tomcat性能优化,内存优化和并发线程连接优化

    今天被一同事问到tomcat和内存优化的问题,而网上的资料基本都是来回copy,所以抽时间随便写点.文章中设置的参数都是一个随便写的,具体的还要根据自己的情况来定. 1.内存优化: 说到tomcat不 ...

  9. idea中 参数没有描述报错 @param XX tag description is missing错误,去除黄色警告

    最近在使用idea开发工具,在方法备注中参数没有描述报错就会报一些黄色警告: @param XX tag description is missing,下面展示去除黄色警告的方法 File--sett ...

  10. vue 内存数组变化监听

    watch: { carts: { handler(val, oldVal) { subtotal(this.carts); console.log(this.carts) }, deep: true ...