[HNOI2009]有趣的数列(卡塔兰数,线性筛)
[HNOI2009]有趣的数列
题目描述
我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件:
(1)它是从1到2n共2n个整数的一个排列{ai};
(2)所有的奇数项满足a1<a3<...<a2n-1,所有的偶数项满足a2<a4<...<a2n;
(3)任意相邻的两项a2i-1与a2i(1<=i<=n)满足奇数项小于偶数项,即:a2i-1<a2i。
现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列。因为最后的答案可能很大,所以只要求输出答案 mod P的值。
输入输出格式
输入格式:
输入文件只包含用空格隔开的两个整数n和P。输入数据保证,50%的数据满足n<=1000,100%的数据满足n<=1000000且P<=1000000000。
输出格式:
仅含一个整数,表示不同的长度为2n的有趣的数列个数mod P的值。
输入输出样例
输入样例#1:
3 10
输出样例#1:
5
对应的5个有趣的数列分别为(1,2,3,4,5,6),(1,2,3,5,4,6),(1,3,2,4,5,6),(1,3,2,5,4,6),(1,4,2,5,3,6)。
考试的一道题目,但是出题人改了题面,考场上写了一个记搜的暴力,然后打表发现是卡塔兰数,然而忘记取模这回事了...
后面再来看这道题的题面,除了全排列减一下枝看不出怎么写暴力。
50分代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#define lll long long
using namespace std;
lll read()
{
lll x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
lll n,p,ans;
lll dp[1000010];
lll f[2010][2010];
lll dfs(lll qian,lll zhi)
{
if(zhi==0) return 1;
if(f[qian][zhi]!=-1) return f[qian][zhi];
if(qian==0||qian==zhi)
{
f[qian][zhi]=dfs(zhi,zhi-1)%p;
return f[qian][zhi];
}
else
{
f[qian][zhi]=(dfs(qian,zhi-1)%p+dfs(qian-1,zhi)%p)%p;
return f[qian][zhi];
}
}
int main()
{
memset(f,-1,sizeof(f));
n=read();p=read();
dp[1]=1;
if(n<=2000) cout<<dfs(0,n)%p;
else
{
for(lll i=2;i<=n;i++)
{
dp[i]=(dp[i-1]*((4*i)%p-2)/(i+1))%p;
}
cout<<dp[n]%p;
}
return 0;
}
这道题的难点在于如何取模,由卡塔兰数必然是整数的性质,我们筛出数据范围内所有的质数,对于每一个和数,记录和数是由哪个质数筛出来的。将分子分母相同的质数数量直接减去,由性质,我们可以知道减出来的个数一定>=0。最后我们直接用快速幂求和即可。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#define lll long long
using namespace std;
lll read()
{
lll x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
lll n,p,ans;
lll pre[2000010];
lll num[2000010];
lll nop[2000010];
lll prime[500010];
lll quick_pow(lll x,lll k)
{
ans=1;
while(k)
{
if(k&1) ans=ans*x%p;
x=x*x%p;
k/=2;
}
return ans%p;
}
int main()
{
lll m=0;
n=read();p=read();
nop[1]=1;
for(lll i=2;i<=2*n;i++)
{
if(!nop[i]) {prime[++m]=i;pre[i]=i;}
for(lll j=1;j<=m,i*prime[j]<=2*n;j++)
{
nop[i*prime[j]]=1;pre[i*prime[j]]=prime[j];
if(i%prime[j]==0) break;
}
}
for(lll i=2;i<=n;i++)
{
lll ii=i;
while(ii!=1)
num[pre[ii]]--,ii/=pre[ii];
}
for(lll i=n+2;i<=2*n;i++)
{
lll ii=i;
while(ii!=1)
num[pre[ii]]++,ii/=pre[ii];
}
lll sum=1;
for(lll i=1;i<=m;i++)
{
if(num[prime[i]])
sum=(sum*quick_pow(prime[i],num[prime[i]]))%p;
}
cout<<sum%p;
}
[HNOI2009]有趣的数列(卡塔兰数,线性筛)的更多相关文章
- BZOJ_1485_[HNOI2009]有趣的数列_卡特兰数
BZOJ_1485_[HNOI2009]有趣的数列_卡特兰数 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ ...
- 洛谷P3200 [HNOI2009]有趣的数列(Catalan数)
P3200 [HNOI2009]有趣的数列 题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足 ...
- [bzoj1485][HNOI2009]有趣的数列_卡特兰数_组合数
有趣的数列 bzoj-1485 HNOI-2009 题目大意:求所有1~2n的排列满足奇数项递增,偶数项递增.相邻奇数项大于偶数项的序列个数%P. 注释:$1\le n\le 10^6$,$1\le ...
- bzoj1485: [HNOI2009]有趣的数列(Catalan数)
一眼卡特兰数...写完才发现不对劲,样例怎么输出$0$...原来模数不一定是质数= =... 第一次见到模数不是质数的求组合数方法$(n,m\leq 10^7)$,记录一下... 先对于$1$~$n$ ...
- 【题解】洛谷P3200 [HNOI2009] 有趣的数列(卡特兰数+质因数分解)
洛谷P3200:https://www.luogu.org/problemnew/show/P3200 思路 这题明显是卡特兰数的题型咯 一看精度有点大 如果递推卡特兰数公式要到O(n2) 可以证明得 ...
- [luogu1485 HNOI2009] 有趣的数列 (组合数学 卡特兰数)
传送门 Solution 卡特兰数 排队问题的简单变化 答案为\(C_{2n}^n \pmod p\) 由于没有逆元,只好用分解质因数,易证可以整除 Code //By Menteur_Hxy #in ...
- [HNOI2009]有趣的数列 题解(卡特兰数)
[HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满 ...
- BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )
打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...
- BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]
1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...
随机推荐
- Python学习笔记(三)- SyntaxError: Non-ASCII character '\xe7' in file
在编辑Python时,当有中文输出或者注释时,出现错误提示:“SyntaxError: Non-ASCII character '\xe7' in file“ 原因:python的默认编码文件是用的A ...
- 基于python实现自动化办公学习笔记二
word文件(1)读word文件 import win32comimport win32com.client def readWordFile(path): # 调用系统word功能,可以处理doc和 ...
- iOS环境搭建
Xcode安装 一定要在App Store上下载XCode . git config常用配置 设置lg命令 查看分支图 git config --global alias.lg "log - ...
- chrome flash 自动暂停问题
chrome flash 尺寸小于398*298时,只要宽和高某一个值小于对应值就会自动暂停,出现这个圆形的播放按钮.(估计是当广告处理了...) 将尺寸调大即可.
- 【洛谷P1443 马的遍历】
题目链接(%%%jyy大佬) 题目描述 有一个n*m的棋盘(1<n,m<=400),在某个点上有一个马,要求你计算出马到达棋盘上任意一个点最少要走几步 输入输出格式 输入格式: 一行四个数 ...
- mysql analyze和optimize
Analyze Table MySQL 的Optimizer(优化元件)在优化SQL语句时,首先需要收集一些相关信息,其中就包括表的cardinality(可以翻译为“散列程度”),它表示某个索引对应 ...
- KETTLE——初见KETTLE
(PS:这是很早以前在CSDN上发过的,那个账号不想用了,所以搬过来) 就在前一段时间,因为公司需要突然被老大告知要用一个ETL工具,第一次知道这么个工具,完全不知道是做什么的.大概问了一下,说是一种 ...
- Arduino入门之前
胡乱乱的,就买了,这个 arduino的板子. 哎...本来明明是 学动漫的,然后 不小心就开始 做软件了,然后 越跑越偏...现在 开始 做 硬件开发了... 其实 还有 树莓派 可供选择,算了,不 ...
- jQ全选或取消全选
function checkAll(chkobj) { if ($(chkobj).children("span").text() == "全选" ...
- Redis介绍及入门安装及使用
Redis介绍及入门安装及使用 什么是Redis Redis is an open source (BSD licensed), in-memory data structure store, use ...