[HNOI2009]有趣的数列

题目描述

我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件:

(1)它是从1到2n共2n个整数的一个排列{ai};

(2)所有的奇数项满足a1<a3<...<a2n-1,所有的偶数项满足a2<a4<...<a2n;

(3)任意相邻的两项a2i-1与a2i(1<=i<=n)满足奇数项小于偶数项,即:a2i-1<a2i。

现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列。因为最后的答案可能很大,所以只要求输出答案 mod P的值。

输入输出格式

输入格式:

输入文件只包含用空格隔开的两个整数n和P。输入数据保证,50%的数据满足n<=1000,100%的数据满足n<=1000000且P<=1000000000。

输出格式:

仅含一个整数,表示不同的长度为2n的有趣的数列个数mod P的值。

输入输出样例

输入样例#1:

3 10

输出样例#1:

5

对应的5个有趣的数列分别为(1,2,3,4,5,6),(1,2,3,5,4,6),(1,3,2,4,5,6),(1,3,2,5,4,6),(1,4,2,5,3,6)。

考试的一道题目,但是出题人改了题面,考场上写了一个记搜的暴力,然后打表发现是卡塔兰数,然而忘记取模这回事了...

后面再来看这道题的题面,除了全排列减一下枝看不出怎么写暴力。

50分代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#define lll long long
using namespace std;
lll read()
{
lll x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
lll n,p,ans;
lll dp[1000010];
lll f[2010][2010];
lll dfs(lll qian,lll zhi)
{
if(zhi==0) return 1;
if(f[qian][zhi]!=-1) return f[qian][zhi];
if(qian==0||qian==zhi)
{
f[qian][zhi]=dfs(zhi,zhi-1)%p;
return f[qian][zhi];
}
else
{
f[qian][zhi]=(dfs(qian,zhi-1)%p+dfs(qian-1,zhi)%p)%p;
return f[qian][zhi];
}
}
int main()
{
memset(f,-1,sizeof(f));
n=read();p=read();
dp[1]=1;
if(n<=2000) cout<<dfs(0,n)%p;
else
{
for(lll i=2;i<=n;i++)
{
dp[i]=(dp[i-1]*((4*i)%p-2)/(i+1))%p;
}
cout<<dp[n]%p;
}
return 0;
}

这道题的难点在于如何取模,由卡塔兰数必然是整数的性质,我们筛出数据范围内所有的质数,对于每一个和数,记录和数是由哪个质数筛出来的。将分子分母相同的质数数量直接减去,由性质,我们可以知道减出来的个数一定>=0。最后我们直接用快速幂求和即可。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#define lll long long
using namespace std;
lll read()
{
lll x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
lll n,p,ans;
lll pre[2000010];
lll num[2000010];
lll nop[2000010];
lll prime[500010];
lll quick_pow(lll x,lll k)
{
ans=1;
while(k)
{
if(k&1) ans=ans*x%p;
x=x*x%p;
k/=2;
}
return ans%p;
}
int main()
{
lll m=0;
n=read();p=read();
nop[1]=1;
for(lll i=2;i<=2*n;i++)
{
if(!nop[i]) {prime[++m]=i;pre[i]=i;}
for(lll j=1;j<=m,i*prime[j]<=2*n;j++)
{
nop[i*prime[j]]=1;pre[i*prime[j]]=prime[j];
if(i%prime[j]==0) break;
}
}
for(lll i=2;i<=n;i++)
{
lll ii=i;
while(ii!=1)
num[pre[ii]]--,ii/=pre[ii];
}
for(lll i=n+2;i<=2*n;i++)
{
lll ii=i;
while(ii!=1)
num[pre[ii]]++,ii/=pre[ii];
}
lll sum=1;
for(lll i=1;i<=m;i++)
{
if(num[prime[i]])
sum=(sum*quick_pow(prime[i],num[prime[i]]))%p;
}
cout<<sum%p;
}

[HNOI2009]有趣的数列(卡塔兰数,线性筛)的更多相关文章

  1. BZOJ_1485_[HNOI2009]有趣的数列_卡特兰数

    BZOJ_1485_[HNOI2009]有趣的数列_卡特兰数 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ ...

  2. 洛谷P3200 [HNOI2009]有趣的数列(Catalan数)

    P3200 [HNOI2009]有趣的数列 题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足 ...

  3. [bzoj1485][HNOI2009]有趣的数列_卡特兰数_组合数

    有趣的数列 bzoj-1485 HNOI-2009 题目大意:求所有1~2n的排列满足奇数项递增,偶数项递增.相邻奇数项大于偶数项的序列个数%P. 注释:$1\le n\le 10^6$,$1\le ...

  4. bzoj1485: [HNOI2009]有趣的数列(Catalan数)

    一眼卡特兰数...写完才发现不对劲,样例怎么输出$0$...原来模数不一定是质数= =... 第一次见到模数不是质数的求组合数方法$(n,m\leq 10^7)$,记录一下... 先对于$1$~$n$ ...

  5. 【题解】洛谷P3200 [HNOI2009] 有趣的数列(卡特兰数+质因数分解)

    洛谷P3200:https://www.luogu.org/problemnew/show/P3200 思路 这题明显是卡特兰数的题型咯 一看精度有点大 如果递推卡特兰数公式要到O(n2) 可以证明得 ...

  6. [luogu1485 HNOI2009] 有趣的数列 (组合数学 卡特兰数)

    传送门 Solution 卡特兰数 排队问题的简单变化 答案为\(C_{2n}^n \pmod p\) 由于没有逆元,只好用分解质因数,易证可以整除 Code //By Menteur_Hxy #in ...

  7. [HNOI2009]有趣的数列 题解(卡特兰数)

    [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满 ...

  8. BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )

    打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...

  9. BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]

    1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...

随机推荐

  1. C. Anna, Svyatoslav and Maps

    C. Anna, Svyatoslav and Maps 给定一个有向图,给定一条有向路径,求一条顶点最少的路径,使得给定的路径是它的最短路 folyd预处理出任意两点间的最短路,然后判断是否可以缩点 ...

  2. 音频学习(一)-离线播放(AVAudioPlayer)

    最后更新:2017-05-23 方法 - (nullable instancetype)initWithContentsOfURL:(NSURL *)url error:(NSError **)out ...

  3. WebServices 实现跨应用程序进行通信和跨平台进行通信

    SOA ,即Service Oriented Architecture ,中文一般理解为面向服务的架构, 既然说是一种架构的话,所以一般认为 SOA 是包含了运行环境,编程模型, 架构风格和相关方法论 ...

  4. SQL报错:ORA-00911:无效的字符错误

    转载自:https://blog.csdn.net/huangyanlong/article/details/38096469 *)ORA-00911:无效的字符错误——由编译环境下一个小错误引起.S ...

  5. Day3 01 枚举

    枚举:关键字 enum  主要为了限定了选择范围,声明了一组相关的值类型的集合. 1.枚举类型,实质上是整整 2.如果不进行赋值操作,枚举类型从0开始递增. 3.枚举不能定义字段 属性  方法. 例如 ...

  6. Linux 下wdcp支持两种安装方式

    wdcp支持两种安装方式1 源码编译 此安装比较麻烦和耗时,一般是20分钟至一个小时不等,具体视机器配置情况而定2 RPM包安装 简单快速,下载快的话,几分钟就可以完成源码安装(ssh登录服务器,执行 ...

  7. AtomicInteger 源码分析

    AtomicInteger AtomicInteger 能解决什么问题?什么时候使用 AtomicInteger? 支持原子更新的 int 值. 如何使用 AtomicInteger? 1)需要被多线 ...

  8. KindEditor上传图片一直提示undefined

    图片已经上传成功了,但是就是不在文本编辑器里显示图片,一直弹出undefined 返回的JSON都对呀!这是官网说的返回值: //成功时 { "error" : 0, " ...

  9. python 卡方检验例子

    python 求拒绝域和卡方值 import scipy.stats as ss obs=[107,198,192,125,132,248] exp=[167]*6 #拒绝域 1%的显著水平,自由度5 ...

  10. 阶段1 语言基础+高级_1-3-Java语言高级_09-基础加强_第2节 反射_11_反射_案例

    student定义sleep方法 用反射+配置文件 定义配置文件 src下new file.新建 加载配置文件.Properties里面有一个load方法,可以加载.properties结尾的配置文件 ...