题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=4182

题解

有一个很直观的想法是设 \(dp[x][i]\) 表示在以 \(x\) 为根的子树中选择一个总花费不超过 \(i\) 的以 \(x\) 为根的连通块的最大收益。

可惜,很不幸的是,这样做的时间复杂度无法像一般的树上背包和序列背包一样被保证。能够被保证复杂度的方法只有(可能是我只会)第二维与子树大小有关的方法,或者是将树转化成 dfs 序,然后在序列上做背包。

第二种方法具体的来说就是一次背包转移的时候,如果当前这一位选了物品,就直接从 \(i-1\) 转移,否则必须跳过这一棵子树,也就是从 \(i-siz[i]\) 转移。

但是这样只能求出来的是包含根的连通块的答案。于是我们可以采用点分治来弥补这个问题。

这样,总的时间复杂度为为 \(O(nm\log n)\),其中 \(nm\) 来源于单调队列优化的多重背包,\(\log n\) 来源于点分治。


代码如下:

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 500 + 7;
const int M = 4000 + 7;
const int INF = 0x3f3f3f3f; int n, m, rt, mima, sum, dfc, ans;
int w[N], c[N], d[N];
int vis[N], siz[N], sq[N], dfn[N], q[M], p[M], dp[N][M]; struct Edge { int to, ne; } g[N << 1]; int head[N], tot;
inline void addedge(int x, int y) { g[++tot].to = y, g[tot].ne = head[x], head[x] = tot; }
inline void adde(int x, int y) { addedge(x, y), addedge(y, x); } inline void getrt(int x, int fa = 0, int dep = 0) {
int f = 0; siz[x] = 1;
for fec(i, x, y) if (!vis[y] && y != fa) getrt(y, x), siz[x] += siz[y], smax(f, siz[y]);
smax(f, sum - siz[x]);
if (smin(mima, f)) rt = x;
} inline void dfs(int x, int fa = 0) {
siz[x] = 1;
for fec(i, x, y) if (!vis[y] && y != fa) dfs(y, x), siz[x] += siz[y];
dfn[x] = ++dfc, sq[dfc] = x;
} inline void calc(int x) {
dfc = 0, dfs(x);
for (int i = 1; i <= dfc; ++i) {
int x = sq[i], hd = 1, tl = 0;
for (int j = 0; j < c[x]; ++j) {
hd = 1, tl = 0;
for (int k = 0; k * c[x] + j <= m; ++k) {
int v = k * c[x] + j, y = dp[i - 1][v] - k * w[x];
while (hd <= tl && q[hd] < k - d[x]) ++hd;
if (hd <= tl) dp[i][v] = std::max(p[hd] + k * w[x], dp[i - siz[x]][v]);
else dp[i][v] = dp[i - siz[x]][v];
while (hd <= tl && y >= p[tl]) --tl;
q[++tl] = k, p[tl] = y;
}
}
}
smax(ans, dp[dfc][m]);
} inline void solve(int x) {
vis[x] = 1, calc(x);
for fec(i, x, y) if (!vis[y]) {
mima = sum = siz[y];
getrt(y), solve(rt);
}
} inline void work() {
mima = sum = n;
getrt(1), solve(rt);
printf("%d\n", ans);
} inline void cls() {
memset(vis, 0, sizeof(vis));
memset(head, 0, sizeof(head));
ans = tot = 0;
} inline void init() {
cls();
read(n), read(m);
for (int i = 1; i <= n; ++i) read(w[i]);
for (int i = 1; i <= n; ++i) read(c[i]);
for (int i = 1; i <= n; ++i) read(d[i]);
int x, y;
for (int i = 1; i < n; ++i) read(x), read(y), adde(x, y);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
int T;
read(T);
while (T--) {
init();
work();
}
fclose(stdin), fclose(stdout);
return 0;
}

bzoj4182 Shopping 点分治+单调队列优化多重背包的更多相关文章

  1. POJ 1742 (单调队列优化多重背包+混合背包)

    (点击此处查看原题) 题意分析 给你n种不同价值的硬币,价值为val[1],val[2]...val[n],每种价值的硬币有num[1],num[2]...num[n]个,问使用这n种硬币可以凑齐[1 ...

  2. [Bzoj4182]Shopping(点分治)(树上背包)(单调队列优化多重背包)

    4182: Shopping Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 374  Solved: 130[Submit][Status][Disc ...

  3. HDU 2191 - 单调队列优化多重背包

    题目: 传送门呀传送门~ Problem Description 急!灾区的食物依然短缺! 为了挽救灾区同胞的生命,心系灾区同胞的你准备自己采购一些粮食支援灾区,现在假设你一共有资金n元,而市场有m种 ...

  4. POJ 1276 Cash Machine(单调队列优化多重背包)

    Cash Machine Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 38986   Accepted: 14186 De ...

  5. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

  6. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  7. bzoj1531[POI2005]Bank notes 单调队列优化dp

    1531: [POI2005]Bank notes Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 559  Solved: 310[Submit][Sta ...

  8. 算法笔记--单调队列优化dp

    单调队列:队列中元素单调递增或递减,可以用双端队列实现(deque),队列的前面和后面都可以入队出队. 单调队列优化dp: 问题引入: dp[i] = min( a[j] ) ,i-m < j ...

  9. [DP浅析]线性DP初步 - 2 - 单调队列优化

    目录 #0.0 前置知识 #1.0 简单介绍 #1.1 本质 & 适用范围 #1.2 适用方程 & 条件 #2.0 例题讲解 #2.1 P3572 [POI2014]PTA-Littl ...

随机推荐

  1. spfa求次短路

    思路:先算出每个点到1的最短路d1[i],记录下路径,然后枚举最短路上的边 删掉之后再求一遍最短路,那么这时的最短路就可能是答案. 但是这个做法是错误的,可以被卡掉. 比如根据下面的例题生成的一个数据 ...

  2. jmeter常用组件简介

    本文主要介绍jmeter使用过程中最常用的一些组件及其作用.性能测试时线程组中可以添加如下的组件,如图所示: test plan:测试计划,是其它组件的容器 thread:线程组,用来设置多少线程,怎 ...

  3. PHP-执行外部程序

    备份 / 恢复数据库 exec - 执行一个外部程序(在 php 文件所在目录进行执行) 很久以前写的,很多方法是项目中的直接复制粘体用不了,只能提供下思路. 用到执行外部程序的就这一句: exec( ...

  4. PHP批量生成底部带编号二维码(二维码生成+文字生成图片+图片拼接合并)

    PHP批量生成带底部编号二维码(二维码生成+文字生成图片+图片拼接合并) 需求: 输入编号如 : cb05-0000001  至 cb05-0000500 批量生成 以编号为名称的下图二维码,然后压缩 ...

  5. LeetCode 112. Path Sum 动态演示

    给一个目标值,判断一棵树从根到叶子是否至少有一条路径加起来的和等于目标值 比较典型的深度优先算法. 引入一个全局变量bResult, 一旦找到一条,就不再搜索其他的了. class Solution ...

  6. SQL标量函数

    调用 MS SQL 标量值函数,应该在函数前面加上 "dbo.",否则会报 “不是可以识别的 内置函数名称”错误.例如 DECLARE @WhichDB TINYINT;     ...

  7. Vulnhub渗透测试练习(一) ----------Breach1.0

    教程网址 https://www.freebuf.com/articles/system/171318.html 学习经验总结 1.使用jre的bin目录下的keytool命令来输入秘钥库口令进而获取 ...

  8. 20190823 尚硅谷MySQL核心技术

    背景 视频时间:2017.09 MySQL版本:5.5 MySQL基础 命令行启动.停止MySQL: net start MySQL(这里是注册的服务名称) net stop MySQL 命令行连接M ...

  9. oracle三大范式

    范式: 设计数据库定义的一个规则, 三大范式, 灵活运用, 人的思想是活的 一范式 1, 不存在冗余数据 同一个表中的记录不能有重复----所以主键(必须有) 2, 每个字段必须是不可再分的信息(列不 ...

  10. Jenkins搭建,节点配置

     一.服务器安装jdk和Jenkins 二.安装完成后打开jenkins页面:http://localhost:8080,设置管理员密码后登陆进去. 三.系统管理->全局变量,勾选允许用户注册 ...